
Workshop: W03

The First International
Workshop on Automated

Program Analysis, Testing and
Verification.

The First International Workshop on
Automated Program Analysis,

Testing and Verification

Introduction .. 1

Testing 1 ... 2

Predicting the effectiveness of evolutionary testing for the measurement 3
of extreme execution times.
H. Gross, B. Jones and D. Eyres

Automated testing of real−time tasks .. 9
J. Wegener, R. Pitschinetz and H. Sthamer

Automated evaluation of COTS components .. 11
C. Mueller and B. Korel

Automating the testing of databases ... 15
R. Davies, R. Beynon and B. Jones

Static Analysis ... 21

ATGen: Automatic test data generation using constraint logic 22
programming and symbolic execution
C. Meudec

Program analysis and test hypotheses complement ... 32
R. Hierons and M. Harman

Annotation−assisted lightweight static checking ... 40
D. Evans

Analyzing dependencies in java bytecode .. 43
J. Zhao

Testing 2 .. 50

Third eye − Specification−based anlysis of software execution traces 51
R. Lencevicius, A. Ran and R. Yairi

Testing, proof and automation: An integrated approach 57
S. Burton, J. Clark and J. McDermid

Test Generation and Recognition with Formal Methods 64
P. Ammann and P. Black

A formally founded componentware testing methodology 68
K. Bergner, H. Lötzbeyer and A. Rausch

Dynamic Analysis ... 73

Java model checking ... 74
D. Park, U. Stern, J. Skakkebæk and D. Dill

On the specification and semantics of source level properties in java 83
R. Iosif and R. Sisto

Towards synergy of finite state verification and testing 89
G. Naumovich and P. Frankl

Testing 3 .. 95

Test automation for object−oriented frameworks .. 96
M. Schnizler and H. Lichter

Object−oriented specification−based testing using UML statechart diagrams .. 101
M. Vieira, M. Dias and D. Richardson

A framework for practical, automated black−box testing of 106
component−based software
S. Edwards

Towards the determination of sufficient mutant operators for C 115
E. Barbosa, J. Maldonado and A. Vincenzi

The First International Workshop on
Automated Program Analysis, Testing

and Verification
Welcome to the first international workshop on automated program analysis, testing
and verification. This workshop aims to bring together researchers and developers
interested in automated verification, analysis and testing of software to build new
collaborations and increase the level of co−operation between the communities.

What the workshop has to offer.
The workshop has attracted more than 25 submissions of which 19 have been
selected to appear in these proceedings and 16 have been selected for presentation
over the two days. The workshop will also feature two keynote speakers − G.
Holzmann and M. J. Harrold. The workshop will be structured as a number of mini−
panel sessions, consisting of 3 fifteen minute presentations followed by forty−five
minutes of questions and discussion. The aim of this format is to prompt detailed
discussions.

Acknowledgements.
We would like to thank all those who have contributed submissions to this workshop.
We would also like to thank the program committee members who have put in many
hours work reviewing the submissions.

Program Committee Members.
Jay Corbett University of Hawaii
Dennis Dams University of Eindhoven
David Dill Stanford University
Matt Dwyer Kansas State University
Patrice Godefroid Lucent Technologies
John Hatcliff Kansas State University
Klaus Havelund NASA Ames Research Center
Gerard Holzmann Lucent Technologies
Bryan Jones University of Glamorgan
Bogdan Korel Illinois Institute of Technology
Jim Larus Microsoft Research
Rustan Leino Compaq Systems Research Center
Tom Reps University of Wisconsin
Debra Richardson University of Califorina, Irvine
Riccardo Sisto Polytechnic of Torino
Daniel Weise Microsoft Research
Martin Woodward University of Liverpool

We hope you enjoy the workshop!

John Penix, Nigel Tracey and Willem Visser
Organising Committee

1

Testing 1

2

Predicting the effectiveness of
evolutionary testing for the measurement
of extreme execution times.

H-G Gross, B F Jones, D E Eyres.
School of Computing, University of
Glamorgan, Pontypridd, CF37 1DL, UK.
Bfjones@glam.ac.uk

Abstract.
Evolutionary algorithms have been used to
generate tests automatically to measure the
worst and best case execution times for
software. Metrics are proposed to predict
the effectiveness of evolutionary algorithms;
the metrics are based on complexity
measured in terms of decisions weighted by
nesting level. Other factors are the cohesion
and coupling of the module and the filtering
effect of predicates that have only a small
probability of execution.

Introduction.

The worst and best case execution times
(W/BCET) of a real-time system are
important since the system must produce
results according to a specified time
schedule. W/BCET analysis demands full
knowledge about the behaviour of the
underlying hardware, the scheduling and
timing of the operating system, and the
execution time of the real-time software
under development. Software testing is a
widely used and accepted technique for
verification and validation and is considered
the ultimate check on the conformance of
the software to its specification.

Evolutionary testing (ET) is a new testing
technique based upon the
application of evolutionary algorithms (EA)
to the generation of test sets. This technique
has already been successfully applied to
structural testing and for testing the timing
behaviour of systems. The latter
complements static analysis for timing.

Evolutionary testing is based on a typical
search/optimisation technique (EA) and such

techniques seldom reveal any information
on how close the best solution of the search
process comes to the actual optimal solution.
This lack of quality assessment of the testing
process might have inhibited its widespread
use. Experiments with evolutionary testing
performed for this work revealed a
correlation between the success of the search
technique to find the optimal (or near
optimal) solution and the complexity of the
test object. Complexity is difficult to define
in the context of software. Many different
interpretations can be found in the literature
ranging from "difficulty to maintain, change
and understand software" to "amount of
information which must be understood and
processed in order to produce, use maintain
and change software".

The key factors in ensuring that ET executes
efficiently and effectively are the choice of
how to represent the input test set, how to
calculate the fitness of the solution
associated with the test set, and to decide
when to stop the search. There is no
guarantee that ET will find the W/BCET in a
reasonable time or even if it will ever find it.
The aim of this work is to devise a metric to
predict whether ET is an appropriate
technique for the software under
investigation.

Complexity measures for evolutionary
testing

Many definitions of software complexity
emphasise cognitive complexity which
indicates the effort needed to understand the
software based on control flow or data flow.
Most software complexity metrics, including
the standard metrics of Halstead, McCabe,
Myers or Harrison concentrate on
complexity as understandability. Software
testability which can be seen as the degree
of difficulty to test software, is related to
software complexity, and most definitions of
software testability focus on one of its
properties. For example Bache and
Mullerburg use the terminology to calculate
the number of required test cases for a test
object for satisfying a specific test strategy.

They define this as the effort to test
software, although it is not the same as
’software testability’.

A very specific definition of an objective
complexity measure, and consequently
testability, is required for evolutionary
testing. A possible definition of complexity
could be "the difficulty for the testing
process (EA) to generate test cases which
satisfy the test criterion". On a module level,
complexity may be seen as the sum of all
program properties which make it difficult
for an evolutionary algorithm to generate
input parameters corresponding to the test
objective, for instance finding the worst-case
execution time. In this case, testability can
be defined as the degree of difficulty to
successfully apply evolutionary testing to a
particular module. Here, complexity must be
understood, not from the human perspective,
but primarily from the perspective of the
(automatic) testing methodology which is, in
this case, an optimisation algorithm.

The execution of a program under test
ideally covers every single entry-exit path
which results in full path-coverage. This can
be regarded as a reasonable strategy for
testing the timing behaviour of real-time
software since all program sections must be
executed in order to determine their
execution time. Consequently, the testing
process must be able to examine all possible
paths in order to ’decide’ which of them are
most promising for the required testing
objective. The difficulty of generating input
according to this requirement is determined
by the decisions in the test program, and
here, ’difficult’ decisions create serious
problems for evolutionary testing. For
instance, these can be decisions that create
small domains so that the branch is only
taken with a very low probability.

The following list outlines properties of test
programs which have been identified as
creating most problems for an evolutionary
testing process to generate test cases for
finding the B/WCET:

• High parameter interdependence and/or
large input vectors. High
interdependence may either be caused
by decisions which require some of the
input to be in a specific relation, for
example a specified pattern, in order to
lead the program flow into a distinct
branch or by calculations on input. In
the second case the values of the input
variables determine the time it takes to
perform the calculations.

• Small input domains or single-value
domains. These are caused by decisions
that execute one branch with a very low
probability. This restricts the ability of
the EA for large search spaces as it is
unlikely to generate the required value
by chance.

• Parameter dependent loops. Loops
whose number of iterations depend upon
input variables are equivalent to
decisions with a single-value domain.
Here, the EA must generate input that
leads to the lowest or highest number of
iterations for the loop.

• Nesting and sequencing. Combinations
of all previous items.

A simple structural complexity measure

Determining the nesting/sequencing of a
program can be regarded as an
initial step towards a structural predictive
measure of ET performance. A number of
nesting measures exist but those based upon
a program’s flowgraph are particularly
useful for ET; each node is assigned a
weighting that can be used to specify the
node complexity more accurately. The
complexity may be defined as:

∑
=

=
N

i

iniLBAND
1

)(*)(

where N is the number of nodes in the
flowgraph, n(i) is the weight of node i

(typically n(i) = 1) and L(i) is the nesting
level of node i. This captures the total
nesting/sequencing of a program. From the
measure BAND we derive the measure
Essential BAND (ESS-BAND) which only
considers the decision nodes in a flowgraph.
This measure defines the essential nesting
(or decision nesting/sequencing) of a
program. The measure is defined as

∑
=

=−
D

i

iniLBANDESS
1

)(*)(

where D is the number of decision nodes
(branches/loops) in the flowgraph. This can
be regarded as a simple basic structural
measure which is sufficient to indicate the
ability of an EA to find input parameters for
a test object corresponding to full node
coverage (every node is visited at least
once). However, it is not sufficient for a test
object containing parameter dependent loops
or single-value domains. For these test
objects, the weight n(i) in measures BAND
and ESS-BAND is set to n(i) = 2. The
performance of the search technique
dropped by about 20-50 % depending on the
nesting level on which the conditional was
inserted and depending on the size of the
search space. We believe that a factor of 2
for each of these critical nodes captures this
effect accurately enough.

Measurements and testing performance
results.

The genetic algorithm used in the
experiments for this work was developed by
the authors and is intentionally simple and
fixed. Although there exist specific
evolutionary operators for some test object
classes which improve the overall outcome,
this prohibits a comparison of the reaction of
the search technique on the different test
objects. The aim is to determine whether a
particular class of software is appropriate for
timing analysis using ET rather than to
optimise the genetic operators. The
following genetic operators were used
throughout the experiments:

• Population size = 40 (keep forty best
individuals).

• Tournament selection, tournament size
= 4.

• Discrete recombination (uniform
crossover pc = 0.5).

• Low constant mutation rate (pm =
0.001).

• Rank Based Fitness.

• Random initialisation of the
chromosomes.

These values were kept constant during the
experiments. The testing terminated when
the fitness had not improved for 200
generations. For each module under
investigation, the path corresponding to the
WCET was determined by inspection. The
fitness function for each test set generated
by the EA was the achieved percentage
coverage of the worst case execution path.
This was measured by instrumentation of the
source/object code. The condition for using
a test module in these experiments is that its
actual worst-case execution path can be
analysed/retrieved. Even for many
moderately complex modules this is an
extremely difficult task and provides the
motivation for this work. The test objects are
three simple sorting algorithms, a few
modules taken from a graphical contour
plotting package and some taken from a
robot vision system (see table 1).

Table 2 displays the properties of the test
objects and their measures Essential BAND
(ESS-BAND) and the success rate of the
evolutionary search (last column in table 2).
The control flow path corresponding to the
WCET is known for the modules under
investigation and the last column is the
percentage of nodes covered during the
evolutionary testing process. It is not to be
confused with the measured WCET of the

test module compared to the actual
maximum execution time. This relation
depends upon the execution time
complexities between the decision nodes for
which no measure is defined yet.

The modules in table 2 are ordered
according to their ET-success rate measured
as the percentage of the worst case
execution time path covered. They are
compared to the measured ESS-BAND. In
general, ESS-BAND is capable of indicating
the success of the evolutionary testing
process quite accurately for many cases. The
overall correlation of measure and ET
performance of the test objects is given in
figure 1 which can be used to predict the
evolutionary testing success rate for a new
module. However, a few cases occurred
during the experiments where the correlation
was poor. These are exceptions which must
be further investigated. The module polex1
is a redesigned version of the original
module polex. The original never executes
the longest path despite its low structural
complexity. It violates an important
principle of ’good software design’: low
coupling. The input vector of the original
module is 1080 bytes long with only 18
bytes actually accessed. This creates an
insurmountable difficulty for the
evolutionary search as the probability of the
EA changing one of the 18 bytes is slim.
Changing the design and reducing the size
of the input vector leads to the generation of
the worst-case execution path. This
corresponds to the low complexity of this
new module ESS-BAND= 2(table 2).

The poor performance of the search
technique for module dzz is caused
by a violation of the principle of high
cohesion. By investigating the
structure of this module, three unrelated
aspects of functionality were identified. A
new design of this original module resulted
in three new modules: dzz1, dzz2 and dzz3.
The new units could be implemented much
more simply (ESS-BAND= 6 and 10
compared to ESS-BAND= 65 for the original
unit) so that the performance of the search

technique increased dramatically for
modules dzz1= 100% and dzz3= 100%.
However, for the second module this drastic
improvement was not observed. This is due
to extremely narrow domains for two
decision nodes in the flowgraph. These two
nested decisions only evaluate to true for 30
out of 65536 values in order to follow the
longest execution path. This narrow domain
is not captured by the measured ESS-BAND.
It is easy to see for humans why the
outcome of this module is so poor but at this
stage it is not quite clear how to implement
an automatic tool which would capture this
type of complexity.

ET performs as expected for the three
sorting algorithms is, bs1 and bs2. Their
complexity ESS-BAND is only 6 but
repeated iterations have a filtering effect and
there is a high parameter interdependence.
Each value of a list for a sorting algorithm
must be in a defined relation to each other
value in the list. By increasing the size of the
input vector, the evolutionary search
becomes increasingly more difficult and the
overall performance decreases.

The size of the input domain and the
complexity of a test object are
inversely proportional. For increasing
structural complexity and decreasing size of
the input vector the outcome of evolutionary
testing stays constant for many cases.
Therefore, simple modules with huge input
vectors can be tested just as easily and
successfully as large and complex test
objects with moderately sized input vectors.
For the design of new modules it means that
keeping the input simple allows a larger and
more complex structure. ESS-BAND does
not currently measure this effect, but it
would be very useful to find a way to assess
this.
A similar topic is assessing the filtering
effect which is imposed on the system
through high input interdependence. This
effect could probably be measured by
looking at operations which are carried out
on the input vector between and in the
decision nodes. Although, it is not quite

clear at this stage how to define rules for this
assessment as it is a mentally demanding
process which is not easy to implement as an
algorithm for an automatic testing
environment.

Conclusion.

There is a strong correlation between the
complexity of software as measured by ESS-
BAND and the efficiency of ET. There is
evidence that the performance of ET
deteriorates
• when the software module has been

designed with low cohesion and high
coupling;

• when node predicates depend on input
variables that are also changed in the
software, and

• when branches have only a small
probability of execution.

 Module name Module Description
 bs1 Bubble Sort for list of four-byte integers.
 bs2 Bubble Sort for list of four-byte integers.
 is Insertion Sort for list of four-byte integers.
 polex Contour Plotting - noise filter.
 polex1 Contour Plotting - redesigned polex.
 delsing Contour Plotting - noise filter.
 epd Contour Plotting - extrapolation.
 dzz Contour Plotting - noise filter.
 dzz1 Contour Plotting - redesigned dzz part 1.
 dzz2 Contour Plotting - redesigned dzz part 2.
 dzz3 Contour Plotting - redesigned dzz part 3.
 di Robot Vision - difference of two picture frames.
 sobel Robot Vision - edge detector.
 min Robot Vision - filter.
 median Robot Vision - filter.

 Table 1: Description of the test objects.

Module N D BAND ESS-BAND Search Space
(bytes)

ETsuccess
(%)

Polex1 13 1 15 2 18 100.0
Dzz1 6 4 14 6 1080 100.0
Dzz3 5 3 11 6 1080 100.0
sobel 9 2 16 3 1024 96.9
di 6 2 11 3 1024 95.9
Bs2 10 3 26 6 1024 95.9
is 9 3 21 6 1024 95.8
Bs1 7 3 19 6 1024 95.6
min 9 4 21 10 1024 87.2
polex 17 3 29 6 1080 80.0
median 15 4 39 10 1024 80.0
Dzz2 9 4 25 10 1080 5.0
delsing 6 4 23 19 1080 65.6
epd 9 6 42 27 1080 43.5
dzz 20 12 99 65 1080 1.0

Table 2: Properties of the test objects. N corresponds to the nodes in the flowgraph, D is the
number of decision nodes. ET-success is the performance of the search technique. It can be
interpreted as the ability to generate test data to cover the path which leads to the longest
execution time. A value of 100 % for ET-success means that we cover all the nodes on the control
flow path for the longest execution path for this module.

Figure 1: ESS-BAND complexity versus average ET performance for ten tests for the modules
polex1, dzz1,dzz3, sobel, diff, bs2, is, bs1, min, median, delsing and epd.

First International Workshop on Automated Program Analysis, Testing and Verification

Automated Testing of Real-Time Tasks

Joachim Wegener, Roman Pitschinetz, Harmen Sthamer
DaimlerChrysler AG, Research and Technology, Alt-Moabit 96a, D-10559 Berlin, Germany

Joachim.Wegener@daimlerchrysler.com
Roman.Pitschinetz@daimlerchrysler.com
Harmen.Sthamer@daimlerchrysler.com

The development of embedded systems is a crucial
area of responsibility in industrial practice. Many
embedded systems need to meet real-time
requirements. This adds a new dimension to the
testing of such systems – not only the logical
behavior, but also the temporal behavior of these
systems requires thorough testing. In comparison
with conventional software systems, the testing of
embedded systems is more complex due to several
specific technical characteristics such as the
development in host-target environments, the intense
interaction of the systems with the real application
environment, and the limited resources of the target
system. In order to facilitate systematic and largely
automated testing in defiance of the complexity of
real-time systems powerful testing tools are
required. Therefore, in this work the testing system
TESSY has been extended in order to support the
total testing life-cycle of real-time tasks. New
components allow a thorough examination of the
logical as well as the temporal behavior of the tasks.
The logical behavior is tested by means of function-
oriented and structure-oriented testing methods; the
testing of temporal behavior is automated by
evolutionary testing.

TESSY [1] concentrates mainly on test case design,
test execution, monitoring, test evaluation, and test
documentation. TESSY automates all test activities
except the test case generation for examining logical
program behavior. In order to automate the test
execution, the required test drivers are generated,
communication between host and target system is
automatically built, the program code is
instrumented and coverage analysis is performed,
and the execution times on the target system are
measured. Regression testing is also entirely
automated by TESSY.

For the generation of functional test cases, TESSY
uses the classification-tree method [2]. TESSY
therefore, contains the classification-tree editor, CTE
[3]. Branch testing is supported by the structure-
oriented test method. It is possible to instrument the
program code to record the branches executed
during functional testing and to define the amount of
branch coverage obtained. On the basis of this
information, the functional test may be further
improved or expanded by structure-oriented test
cases. This test strategy guarantees an extensive test
of the logical program behavior. The test can be run

with or without instrumentation in order to exclude
side-effects from the instrumentation. The results
generated from the test object will then be
automatically compared with each other and
deviations documented in the generated test
documentation.

The most important property, however, is the
automation of testing temporal behavior by means of
evolutionary testing. Errors in the temporal behavior
of real-time systems usually result from a violation
of specified timing constraints. The tester’s task is to
find input situations that result in the maximum
execution times. If the execution times exceed the
specified constraints, an error has been detected. In
evolutionary testing the search for the longest
execution time is considered a discontinuous,
nonlinear optimization problem, with the input
domain of the test object as search space, sets of test
data as decision variables, and execution times as
objective values. In order to solve this optimization
problem, evolutionary algorithms are used to
approximate the longest execution times of a test
object within several generations. The application of
evolutionary algorithms for test data generation is
known as evolutionary testing. Previous works have
shown that evolutionary testing is superior to
random testing [4] and systematic testing [5] when it
comes to examining the temporal behavior of real-
time systems.

Logical and temporal behavior testing are combined
through seeding. Test data collected by the tester for
the functional test are integrated into the initial
population of the evolutionary test. This means that
the evolutionary test benefits from the tester’s
knowledge concerning the functions and internal
structures of the test object. The search does not
commence with a randomly generated population.

The first industrial application of TESSY with the
set of properties described in this paper was initiated
last year for testing an engine control system
containing more than 20 different tasks. All tasks
were tested for their logical program behavior with
the classification-tree method and complete branch
coverage for all the tasks was reached. Further, six
time-critical tasks have been tested for their
temporal behavior with evolutionary testing. To
avoid probe effects (deviations from actual run-time
behavior) instrumentation is turned off for the tasks.

The number of input parameters of these tasks varies
from 9 to 18 with a number of program lines set
between 39 and 119, the static program paths differ
from 1 to 37 million and the cyclomatic complexity
from 1 to 27. For each task evolutionary testing
generated between 7,500 and 15,000 sets of test
data. The target processor is the Siemens C167 with
1 Mbytes SRAM and with a speed of 20 MHz. The

testing of one single task took approximately 1 hour
and all tests were carried out on the target system
that has been designated for future use in cars. The
execution times were determined using hardware
timers of the target environment with a resolution of
400 ns. The results of the evolutionary tests
compared with the execution times determined by
the developers’ tests are shown in Table 1.

Longest execution time in µs Program paths Cyclomatic
task

Evolutionary test Developer test

Lines of
code

No. of
parameters Complexity

1 69,6 µs 67,2 µs 41 18 224 10

2 120,8 µs 108,4 µs 119 18 37.748.736 27

3 112,0 µs 108,4 µs 98 17 1 1

4 68,8 µs 64,0 µs 81 32 2 2

5 59,6 µs 57,6 µs 39 14 408 11

6 58,4 µs 54,0 µs 56 9 63.864 18

Table 1: Maximum execution times of engine control tasks determined by evolutionary testing and developers’ tests

These TESSY extensions described have proved to
be highly applicable in practice for testing an
engine control system. Both, the logical and the
temporal behavior have been thoroughly tested. The
deployment of the CTE methodology has been
approved and utilized by the developers in order to
generate systematic test cases that obtained 100%
branch coverage. All other test activities are fully
automatically executed on the target system,
specifically the testing of the temporal behavior.
For the 6 tasks testing the temporal behavior, longer
execution times were found with the evolutionary
test than with the developers’ tests. This proved to
be the case even though evolutionary testing treats
the software as black boxes, whereas developers are
familiar with the function and structure of the
software and achieve 100% branch coverage. An
explanation might be the use of system calls,
linkage, and compiler optimization whose effects
on temporal behavior can only be guessed with
difficulty by the developers. However, it should be
noted that the execution times determined did not
exceed the specified timing constraints for any of
the tasks. The intensive testing has certainly
strengthened the developers’ confidence in a correct
temporal behavior of the system. With an average
number of 7 regression tests for each task,
TESSY’s entirely automated execution of
regression testing has proved extremely useful.

Future work on testing real-time systems will focus
on how static analysis techniques could support
evolutionary testing, e.g. for search space reduction,
to find a selection of evolutionary algorithms for
test use, and to obtain information on internal states
of the test object that may influence its temporal
behavior. Further, the combination of evolutionary
testing methods with static analysis techniques for
the estimation of worst case execution times is
meant to facilitate a precise forecast of the actual
longest execution times of tasks [6]. Future plans,

include the expansion of TESSY for integration
testing and the examination of the suitability of
evolutionary testing for system testing.

References:
[1] Wegener, J. and Pitschinetz, R. (1994): TESSY

- Yet Another Computer-Aided Software
Testing Tool? Proceedings of the European
International Conference on Software Testing,
Analysis & Review EuroSTAR ’94, Bruxelles,
Belgium.

[2] Grochtmann, M. and Grimm, K. (1993):
Classification Trees for Partition Testing.
Software Testing, Verification & Reliability,
vol. 3, no. 2, pp. 63-82, Wiley.

[3] Grochtmann, M. and Wegener, J. (1995): Test
Case Design Using Classification Trees and
the Classification-Tree Editor CTE.
Proceedings of the Software Quality Week
’95, San Francisco, USA.

[4] Wegener, J. and Grochtmann, M. (1998):
Verifying Timing Constraints of Real-Time
Systems by Means of Evolutionary Testing.
Real-Time Systems, vol. 15, no. 3, pp. 275-
298, Kluwer Academic Publishers.

[5] Mueller, F. and Wegener, J. (1998): A
Comparison of Static Analysis and
Evolutionary Testing for the Verification of
Timing Constraints. Proceedings of the IEEE
Real-Time Technology and Applications
Symposium RTAS ’98, pp. 144-154, Denver,
USA.

[6] Wegener, J., Pohlheim, H., and Sthamer, H.
(1999): Testing the Temporal Behavior of
Real-Time Tasks using Extended Evolutionary
Algorithms. Proceedings of the European
International Conference on Software Testing,
Analysis & Review EuroSTAR ’99,
Barcelona, Spain.

���������
	��
�����������������������������������

���! #"�$�%'&)(+*�,�-�&/.
,�&102&/"
3/(4%� 5&/.�%
687�7 -9.
��-�: 6 .
:;%'-9%�$�%'&<��=?>@&�,)A�.
� 7 ��BDC
�EA
-�,�3�B���F 6HGJI�K�I
L!INM *�O

 P$
& 7�7 &/(RQS-�-T%'UV&�W!$
F!X��!(R& 7 QY-�-T%ZUH&�W!$

[E\�]_^a`E[EbE^
cedgfihkjgfilkmkngoqp�rasutvt1w/x�y/mzf/hz{�|E}~}�{~���gwi{����gw/hz}'p��8su}�lz�?fix�w@mk��su}�lzw/n�f
lkx��Rmkngo<lkfi�;���D|Enuw�}~fiyilksux�lz�ufiletvfi�uwi�@lk�gmk��lzfi�;�<�Dmz}�}~mkyijghkl�mk�Elk�gfil
�;sujgx�yiw�y/su�uw�}~sDx�yisutv�usungw/nglk�Emk�Engsulefidgf/mkhkfi�uhkw!�D��nNlk�gmk�E�uf/�uwix��
�?wP�ux�w/�8winul+fin�fijglksutvfilkw/��fi�u�ux�sufiy/��}~sDx�w/dgfihkjgf/lkmkngo�ra|E�e�
�;su}�lz�?fix�w!�����gmk�vfi�u�ux�sufiyi�qjg�8w/��f/n�mknglkwix�}~f/yiw��ux�su�umkngo��;lzx�filkw/og�
lks<fijulzsDt1f/lzw�lk�gw�widgf/hzjufilkmzsDn��ux�suyiw/�8���Dc�dufihkjgfilkmksun��uw/ogmznu�E��mklk�
lk�uw��uw/dgwihksu�uw/x��ux�sudgmk�umkngoPf�}~sDx�tvfihEw/dgfihkjufilkmksun#�;�uw/yimk}~mky/filkmksun
su}�lk�gw�y/sut1�usungw/ngl������gw�w/dgf/hzjufilkmksun �;�uwiy/mk}~mkyif/lkmzsun¡mk�
f/jglksut1f/lkmzy/fihkhk�qlkx�f/ng�8hkfilkw/��mknglks�wi¢uwiyijulzf/�uhkwNf/�8�;wix�lkmksung�+lk�gfilaf/x�w
ju�8wi�£�u�¤fin¥widgf/hzjufilkmzsDn¤w/ngogmkngw5lks¥ouwingw/x�f/lzw5fijulzsDt1f/lzmkyif/hzhk�
mkng�Djglk�Plzs¥widgf/hzjufilkw�lk�gw¦yisutv�usDngwingl�§¨�#�Dwi�gf/dgmzsDx'�ª©2�gw/n«lk�gw
w/dgfihkjgf/lzmksun#winuogmznuw�ouwingw/x�f/lzw/��f/n�mkng�ujglªy/fijg�8mkngo�fin¬f/�8�8wix�lkmzsDn
dumzsuhkf/lzmksung��lk�gw5y/sut1�usungw/ngl<�usuw/�2ngsul<w/¢g�gmk�umkl<lk�gw5wi¢u�uwiyilkw/�
�Dwi�gf/dgmksuxZ��|En�lk�gw�sulk�gw/xv�ufing�D�����uwin¬ngs#fi�8�;wix�lzmksun�dgmzsDhzf/lzmksun
suy/yijgx��8��mklNogmkdgw/�¬lk�gw��uw/dgwihksu�uwix�t1sDx�w�y/sung}~mk�uw/ngyiw�lk�ufil�lk�gw
y/sutv�usungw/ngl5w/¢g�gmk�umzlk�­lz�gw®�uw/�gf/dgmzsDx¥f/�Y�Dwi�;yix�mz�uw/�¯mkn°lk�gw
w/dgfihkjgfilkmksun¬�;�Dwiyimk}~mkyifilkmksun��±|Ejgx�mkngmklkmzf/h
wi¢u�uwix�mzw/ngyiw��gf/���;�gsD��n
lk�gf/lJlk�umz�²f/�u�ux�suf/yi��tvfi�³�uw´f´yisu�8lk{~w/}~}�wiyilkmkdgwµ�?fi�¶su}
w/dgf/hkjgfilkmksun1su}�ra|E����y/sut1�usunuwinglk���
·�¸/¹uº@»D¼i½_¾
f/jglksutvfilkwi�<lkwi�;lzmkngou��r�|E�e��yisutv�usDngwingl�w/dgfihkjgf/lzmksunu���Dhzfiy/���Dsu¢
lkwi�;lkmzngou�!x�sD�ujg�;lkngwi�;�alkwi�;lzmkngou�!�?�gmklzwE�Dsu¢+lzw/�8lkmznuog��fijglksutvfilkwi��lzw/�8l
ouwingw/x�f/lzmksung�D}~sDx�tvfih�tvwilk�gsu�D�
¿ À;ÁE^a`EÂ�ÃEÄEbE^aÀ;Â+Á
�_mzngy/wElk�gwE�uw/ogmkngngmkngovsu}�lz�gw�ÅÇÆuÆuÈ±§¨�;�Dlk�gwª�uw/tvfing�+}~sDx�hzf/x�ouw?f/ng�
y/sut1�Dhkwi¢£�8sD}~lk��f/x�wÉ�8�R�;lzw/t1�Ê�ufi�Ê�uwiw/n£�8lkwifi�umkhk�¥mkngyix�wifi�;mkngo��
���gw��uw/dgw/hzsu�utvw/ngl_su}elk�gwi�;w@�8�R�;lzw/t1��mk�
�umz}�}~mkyijuhzl�f/ng��yisu�8lkhk�_�)��n
x�wiy/wingl1�Rwif/x����;widgw/x�fih1ngw/�Ëlkwiy/�gngsuhksuogmkwi�<�ufidgwÌw/t1w/x�ogw/�2lk�gf/l
�ufidgwÍfÍ�8mkogngmk}~mkyif/nglÉmkt1�DfiyilÉsDnÎnuwi�Ï�?fi�R�
su}£�8sD}~lk��f/x�w
�uw/dgwihksu�utvwinul���|@ngwÌsu}�lk�gwi�;wÌlkwiy/�gngsuhksuoumzw/�<mz�<lk�uwÌx�wiju�8wÌfinu�
mknglkwiogx�f/lzmksun�su}��ux�w/dgmzsDjg�8hk�2�uw/dgwihksu�uw/���8sD}~lk��f/x�w�yisDt1�usDngw/nglz�
mknglzsNngw/��hk���uw/dgw/hzsu�Dmznuo��;su}�lz�?fix�w��8�R�;lzwitv�)�R�e�gmk�
fi�D�ux�suf/yi���ufi�
lk�gw��usulkwinglkmkf/h�lksÐx�wi�ujgy/w�yisu�;l�f/ng�«yi�Ry/hkw�lkmztvw�lk�gju�¬ogmkdgmznuo
�Dwidgw/hksu�uw/x���lz�gwqfi�umkhkmzlk��lks¬�uw/hzmkdgw/x�f�yisutv�uhkwi¢Ì�Dx�sD�ujgy/l�}~f/�;lzw/x
f/ng��f/lÑf�hksu�?wix�y/su�8lÑlksqf�y/jg�8lksutvwixZ��|E}
�uf/x�lkmkyijuhzf/x�mknglkw/x�w/�8lÑmz�
lk�gw�fi�Dmzhkmklz��lzs�mknglkwiogx�filkwN�;�DwiyimkfihkmzÒ/wi��jungmzlk�vsD}��;su}�lz�?fix�wNyifihkhkwi�

p�y/sutvt1w/x�y/mzf/hz{�su}�}~{�lz�gw/{~�8�uwihk}4p�Ó�ra|E����ÔÕy/sutv�usunuwinglk�)�Î�e�umz�
fihkhksu�?���uw/dgwihksu�Dwix���lks��ujumzhk���;su}�lz�?fix�w��;�R�;lzw/t1��yisung�;mz�;lkmznuoÌsu}
ra|E���¬yisDt1�usDngw/nglz�1finu�q�8sD}~lk��f/x�w�yisDt1�usDngwinulz�@�Dwiduwihksu�uw/��mzn
�gsDjg�8w��
ÖEwidgw/hksu�utvwingl×�?mklz� ra|E�e� yisutv�usDngwinglk� �gf/� t1f/ng�
fi�Ddgfinulzfiouwi�ÙØ�ÅZÚDÛ'Ü¤}�jgngyilkmksungf/hkmzlk�Ýmk�Îmzng�;lkfinglkhk�Ùfiyiyiw/�8�;mk�uhkwi�
y/sut1�usDngwinglk�Etvfi�N�uw�hkw/�8�Ey/su�8lkhk�R��fing�<y/sut1�usunuwinglk�Etvfi�N�gfiduw
�uw/w/n��uw/dgwihksu�uw/�#�u��wi¢g�Dwix�lz�Nmzn#lz�uw�f/x�wif���Þªhksungo¬�?mzlk�¬tvfing�
f/�udgfinulzf/ogwi�Nsu}1ju�8mkngo#ra|E�e��y/sutv�usungwinglk�;��lk�gw/x�wqf/x�w��8w/dgwix�fih
�umk�8f/�udgf/nglkfiogw/�)��ÞÙ�uwiduwihksu�uw/xPmk�¦�ux�w/�8w/nglkwi�­��mklz�Yf¥ra|E�e�
yisDt1�Dsungw/ngl�lk�gfil�su}�lkwin��ufi��sunuhz��fP�ux�mkwi}��Dwi�;yix�mk�ulkmksun�sD}�mklk�
}�jgngyilkmksunufihkmklz�R��y/fix�x�mkwi�1nusqogjgf/x�finglkwiw�sD}�fi�Dwißujufilkw�lkwi�;lkmznuog��fing�
�gf/�ÊfÉhkmztvmklzw/�à�uw/�8y/x�mz�DlkmzsDn¤sD}�sDdgwix�fihzh�yisutv�usDngwingl<ßDjgfihkmklz�_�
Þª�u�Dmznuo¬lks�lk�gwi�;wq�umk}~}�mzy/jghklzmkwi�;��lk�gwq�Dwidgw/hzsD�uwixvsu}~lkwin��usuw/��ngsul
�gf/dgwµfiy/yiw/�8�Ílks³lk�gwµ�;sujgx�yiwµy/su�uwásu}Ylk�gwáyisDt1�usungw/ngl��
���R�umkyif/hkhk�R�
ra|E�e��yisutv�usungw/nglk�Nfix�w�yisDng�8mk�uw/x�w/���uhkfiy/�¬�usu¢gw/�
�uw/yif/jg�8w��uw/dgw/hzsu�Dwix���sunghk���ufidgwÊf/yiy/wi�8�ÌlksÉlk�gw/mzx�mknulzw/x�}�fiy/wi���
���gwÊyisutvt1sDn5��f/��lksÉmknglkwix�}�fiy/wÊ��mklk�5�8jgy/��y/sut1�usunuwinglk��mk�
lk�gx�sujuou�+fin+fi�D�uhkmzyifilkmksun+�Dx�sDogx�f/tÉmznulkwix�}�fiyiw?Ó�Þªâ_��Ô'�iÖEwidgw/hzsD�uwix��
�?finglkmkngo¤lks¤jg�;w�ra|E���Sy/sut1�usunuwinglk�#}~fiy/w�lk�uw��ux�su�uhkwit³su}
�Dwilkwix�tvmkngmznuoÐlk�gw�w/¢gfiyilN}�jgngyilkmksungf/hkmzlk�Éfing�¤ßujgf/hzmklk�Ésu}�lz�uwi�;w
y/sut1�usungw/nglk�)�����gwi�Ì�?finul�lks��gf/dgwq�;sutvw�fi�;�8jgx�fingy/wi��lk�gf/l�lz�uw
yisDt1�Dsungw/ngl�§¨�à}�jgngy/lzmksDngfihkmklz�®yisDx�x�wi�;�usDng�u�àlksÍlk�gw
wi¢g�uw/yilkwi�
}�jgngyilkmksungf/hzmklk�_����n�fi�D�umklkmzsDng���uw/dgwihksD�uwix����?fingl��;sutvw@fi�;�;jgx�fingy/wi�
sD}qyisDt1�Dsungwinulzã ��ßujgfihkmklz�_ä@ngs«sDngw�mk�¬�?mzhkhkmkngoÉlzsÐjg�8w�f�hksu�
ßDjgfihkmklz�åyisDt1�Dsungw/ngl�mkng�Y}�sux²wi¢gf/t1�Dhzw/�Sf¶�;fi}�wilk�R{~y/x�mklkmzy/fih
�;su}�lz�?fix�w¤�8�R�;lkwit��+ÞªngsDlz�uwix#mk�8�;jgw¤mz���usDx�lkfi�Dmzhkmzlk�àsD}�ra|E���
y/sut1�usungw/nglk�)����n¥t1f/ng�«yif/�8w/�8��lk�gw¦wi¢u�uwiyilkf/lzmksun¤mk�#lk�gf/l�lk�gw
�uw/�gfidumzsuxÑsu}ef1yisutv�usungw/nglkÓ��;Ô�mkn�sunuw�w/ngdgmkx�sungtvwinul_mk��lk�uw@�8f/t1w
f/��mknÉfingsDlz�uwixZ�?ÖEwi�8mkogngw/x���t1f/�¦�?finul��8sDt1w�fi�8�;jgx�f/ngy/w�lz�umz�
w/¢g�uwiy/lkfilkmksun�mk�Ñyisux�x�wiy/l��
ÖEw/dgwihksu�uw/x���tvjg�8l��gf/dgwÐf¤ogsusD�Sjgng�Dwix��8lkf/ng�umkngoJsu}#ra|E�e�
yisDt1�Dsungw/nglk��mznàsDx��Dwix�lksJmknglkwiogx�filkw«lk�gwitå�ux�su�uw/x�hk�£mznulzsSf
�;�R�;lzw/t¯jgnu�uwix��Dwidgw/hzsD�utvwingl��Ñæ�x�sDt¯lk�gwÌhkmztvmklzw/�Êmznu}~sux�t1f/lzmksun
f/dgf/mzhkfi�uhkw°f/�usujulÐy/sut1�Dsungw/nglz�;�É�uw/dgwihksu�uw/x��çt1jg�;l«mk�uw/nglzmk}~�
yisDtv�usunuwinglª�ux�su�Dwix�lkmkwi�NÓ�w!� o�� �
}�jgngyilkmksungf/hkmzlk�R�
hkmktvmzlkfilkmksung�;�
�ux�wi{
yisDng�umklkmksung�;Ôªmkn�sux��uwixElks�mz�Dwinglkmk}~�q�?�gmkyi���ux�su�uw/x�lkmzw/�vwi¢g�gmk�umklkwi�
�u�<lk�gw�yisutv�usungwinulÑfix�w�mkn<yisung}�hkmzy/l���mklk�<wi¢u�uwiy/lzw/���ux�su�uw/x�lkmkwi�;�
sulk�gw/x�yisutv�usungw/nglk�8��sux2�?mklk�Yf£�;�R�8lkwitè�uw/�8mkogn���|Engyiw£lk�gw
y/sut1�usungw/ngl�mz�<f/yiy/wi�ulkw/�2}�sux�mknglkwioux�f/lzmksunu��lk�gw/�8w�yisunu}~hkmkyilk�8�?sux
tvmz�;t1f/lzy/�gwi�;�étvjg�8lê�uw x�wi�uf/mkx�w/� lk�gx�sujgou� y/sutv�usunuwingl
f/�ufi�ulkfilkmksun��<|Enuhz�ç�u�Ëyisux�x�wiy/lzmkngoëlk�gwi�;wYtvmz�;t1f/lkyi�gw/�¤mk�Ðmkl

�Dsu�;�;mz�Dhzw?lks1mknglkwiogx�filkw�lk�gw?yisutv�usDngwingl�mknglks1lk�gw?�;�R�8lkwit<�
r�sutv�usDngwingl�widgf/hzjgf/lzmksDnÐmk�#sDngw��Dsu�;�;mz�Dhzw¦�8sDhzjulzmksun«lks¤lz�gw/�8w
�ux�su�uhkwitv�)�Ð�e�R�umky/fihkhk�R�Sf³t1f/ngjgf/h
widgf/hkjgfilkmksunåsu}ëra|E���
y/sutv�usunuwinglk�2yisDng�8mk�;lk�2su}�ogf/lz�gw/x�mkngo¤mkng}�sux�tvfilkmksun¥fi�usDjgl<lk�gw
y/sutv�usungw/ngl�§¨�Ì�uw/�gf/dgmzsDx<}~x�sut´fidufimkhkfi�uhkw2�usuy/jgtvwinglkfilkmksun¦fing�
�uw/x�}�sux�tvmkngoÙmknglkwix�}~f/yiwì�ux�su�umknuo��¦��nglkw/x�}�fiy/wí�ux�su�umkngoÙmk�²f
lkw/yi�ungmzßujuw����uwix�w�f��uw/dgwihksu�uw/x@�uwi�;mzoung��f<�8w/l�su}Emkng�ujul�y/fi�8w/�8�
w/¢gwiy/jglkwi�çlz�uw°yisutv�usungwinulÐ�?mklk�´lz�uwi�8w¯mkng�ujgl«y/fi�;wi�8�5f/ng�
f/ngf/hk�RÒiw/�@lk�gw�y/sut1�Dsungwinul�§¨�Esujglk�ujglk�)�D���gmk�E�ux�suy/w/�8�Esu}a�ux�sD�umkngo
�uwihk�u��lz�uwª�Dwidgw/hksu�uw/x�lzs�w/dgfihkjgf/lzwªyisDt1�Dsungw/ngl��ux�su�Dwix�lzmkwi���iÞ?}�lkwix
f/n¬mkngmzlkmkfih?widgf/hzjgf/lkmzsDng��lk�gwq�Dwidgw/hzsD�uw/x1t1f/�Ì�uw/�8mkogn¬f/�u�umklkmksungf/h
mkng�DjglÑyifi�;wi�1lzs�yihkfix�mk}~��mzlk��}~jgngy/lkmzsDngfihkmklz��fing�qhzmktvmzlkfilkmzsDng�)�!���gmz�
f/�u�ux�suf/yi�<tvfi���uw�fin<w/}~}~w/yilkmkdgw���f/�NsD}�widgf/hkjgfilkmksun<su}asuduwix�fihkh
y/sutv�usDngwingl¤}~jgnuyilkmksungf/hzmklk�_�PîEsu�?widgw/x��Ésunuw°su}Jlk�gw²tvf�ïðsux
�Dmz�;fi�Ddgfinulzf/ogwi��su}�lk�gmk�qf/�u�ux�suf/yi��mk��lz�ufilv}~x�w/ßujgw/nglkhz�Êf#hzf/x�ogw
nujgt1�uw/x
su}
mznu�ujgleyif/�8wi�Ef/x�w�nuwiw/�uwi�<lks�f/ngf/hk�RÒiw�f�y/sutv�usungwinul��
�_sutvw5yisutv�usungw/ngl<�ux�su�uwix�lkmkwi�2y/fin¤�uw�w/fi�;mkhk�«widufihkjgf/lkwi�¤�u�
�;mztv�uhkw+mknglkw/x�}�fiy/wv�Dx�su�umkngog�±�ujgl�widgf/hkjgfilkmksun�su}�sulk�uwixñ�ux�su�uw/x�lkmkwi�
tvfi�qx�w/ßujgmkx�wN�8mkogngmk}~mkyif/nglñmknulzw/x�}�fiy/w��ux�su�umkngo�f/ng�qtvfi�<�uw�dgwix��
hkf/�usux�{~mknglkwing�;mkdgwi�Ílkwi�DmzsDjg�;�®f/ng��wi¢g�uw/ng�8mkdgw��J��nòfi�D�umklkmksung�
�Dwidgw/hksu�uw/x��¡t1f/� }~x�wißujuwinglkhz� tvmk�8� tvf�ïðsDxóy/sutv�usungw/ngl
hkmkt1mklkfilkmksung�Ífinu�³mkngy/sux�x�w/yilkhz�¶fi�;�;jgt1wáyiw/x�lkfimknìyisDt1�Dsungwinul
}�jgngy/lzmksunufihkmzlk��lz�ufila�usDwi�+ngsDlax�wi�Dx�w/�8w/nglalk�gwNf/yilkjgfihayisDt1�Dsungw/ngl
}�jgngy/lzmksDngfihkmklz�_���e�gmk�
tvfi�Îhzw/fi�álzsámkngyisDx�x�wiy/l5jg�8w®su}¥lz�uw
y/sutv�usunuwingl��?�gwin¦mzl+mk��mknglkwiogx�filzw/���?mklz��f#�;su}�lz�?fix�wP�;�R�8lkwit
jung�uw/x��uw/dgwihksu�utvw/ngl�����nq�8jgtvt1f/x��R��tvfinujgfih�mknglkw/x�}~f/yiw��ux�su�umknuo
mk�Ñf?hzf/�usux±mknulkwing�;mzduw�f/ng�1�gmkog�ghk�@mkngf/yiy/jgx�f/lkw�f/�u�ux�sufiy/���
ô [EÄE^�Â+õÊ[E^�öaÃ�öa÷E[EøaÄE[E^�À;Â+Á�[Eù�ù�`EÂ�[EbEú
��nçlk�gmk�¤�uf/�uw/x��#��w­�ux�wi�;wingl2f/nËf/jglzsDt1f/lzw/�çf/�u�ux�sDfiy/�Ë}~sDx
w/dgfihkjufilkmkngo�ra|E�����8su}�lz�?fix�w!�����gmk�
f/�u�ux�sufiy/��jg�;wi�
f/n�mknglkwix�}~f/yiw
�Dx�sD�umkngo#Ø�ÅÇûuÛ?�;lzx�filkwiog�<lksqfijulzsDt1f/lkw�lk�gmk��w/dgfihkjgfilkmksun±�!��n<t1f/ng�
y/fi�;wi�8���8mkogngmk}~mkyif/nglñ�ux�su�umkngo�mk�1nuwiyiw/�8�;fix��qlzs�widgf/hkjgfilkw����gw/lk�gwix
f�y/sut1�usunuwingl?�ufi��f��8�Dwiy/mk}~mkyq�uw/�gfidumzsuxvsux1nusul����e�uwix�wi}�sux�w/��f
tvf�ïðsDx¤su�Çï�w/yilkmzduwçmk�Sf/jglksutvfilkmkngo°lk�gwËwidgf/hzjufilkmzsDn²�ux�suy/wi�;�)�
cedgfihkjgfilkmksunÊ�uw/ogmkng����mklk�Êlz�uw¬�uw/dgwihksu�Dwix��Dx�sDdgmk�umkngo2fÌ}~sDx�tvfih
w/dgfihkjufilkmksunv�;�uw/yimk}~mkyif/lkmksunvsu}�lk�gwEy/sut1�usunuwingl_lk�gfil��uw/�8y/x�mk�uwi�ñlk�gw
w/¢g�uw/yilkw/�PyisDt1�usungw/ngl�§¨���uw/�gfidumzsux�f/ng�Plk�gw�y/�gfix�fiy/lkwix�mk�8lkmkyi��su}
lk�gwÊmkng�ujulz���²���gwPw/dgfihkjgfilkmksun¦�;�uwiyimk}~mkyif/lzmksun¦tvfi��y/sung�;mz�;l�sD}
f/�8�;wix�lkmksunu���uwi�;yix�mk�umkngo<wi¢g�Dwiyilkw/���uwi�gf/dgmksux
finu�<y/�gf/x�fiy/lkwix�mk�8lkmkyi�
sD}íyisDt1�usDngwinul°mkng�ujglk�)�Y�e�uwèf/�8�8w/x�lkmzsDn��uw/�8yix�mk�umznuoòlk�gw
y/sutv�usunuwingl�§¨�¡�uw/�gfidumzsDx�mk�¡yifihkhzw/� lz�uw �usu�;lk{~yisDng�umklkmzsDn
f/�8�;wix�lzmksun±���e�uw�fi�;�;wix�lkmksun��Dwi�;yix�mk�umkngo#lz�gw�mkng�ujglªmk�Nyifihkhkwi�Plz�uw
�Dx�w/{~yisDng�umklkmzsDn�fi�;�;wix�lkmksun�lk�gfilÑ�uw/�;yix�mk�uw/��lk�gw�y/�gfix�f/yilzw/x�mk�8lkmkyi��su}
mkng�ujulÌlk�gfilÌ�Rmzw/hz�­lk�gw¤w/¢g�uwiy/lkwi�Y�uw/�gfidumzsuxZ���e�gw¥w/dgfihkjgf/lkmzsun
�;�uw/yimk}~mkyifilkmksun�mk�Éfijglksutvfilkmkyif/hzhk�­lkx�finu�8hkfilkwi��mznulzs�wi¢uwiyijglkf/�uhzw
f/�8�;wix�lkmksunu�)�����gw/�8w¥wi¢gw/yijglkf/�uhkw¤f/�8�;wix�lkmksunu��f/x�w¥jg�8w/�Y�u�Jf/n
w/dgfihkjgf/lzmksun2w/ngogmkngwÌÓ�f/nPfijglksutvfilkwi�2lkwi�8lEy/fi�8w�ouwingw/x�f/lzsDx�Ô�lk�gfil
ouwingw/x�filkwi�¦mkng�ujglk�¦lksYw/dgfihkjgfilkw¥lz�uw¤yisDt1�Dsungwinulü§T���Dwi�ufidgmksuxZ�
©2�gw/nqlk�gwNwidgf/hzjufilkmzsDnqwinuogmkngw�ouwingw/x�f/lzw/�1f/nqmkng�ujglÑy/fijg�8mkngo�f/n
f/�8�;wix�lkmksun£dgmksuhkfilkmksung��lk�gw¦y/sutv�usunuwingl<�Dsuwi�Êngsul<wi¢u�gmz�Dmkl<lz�uw
w/¢g�uw/yilkwi�P�uw/�gfidumzsDx'��|En�lk�gwqsDlz�gw/x1�ufing�D���?�gwin¬nus�fi�;�8wix�lzmksun
dumzsuhkf/lkmzsDn�suyiy/jgx��8��mkl+ogmkdgw/��lk�gw#�uwiduwihksu�uwixNt1sDx�w#yisung}�mk�uwingy/w
lk�gf/l�lk�gwEyisutv�usDngwingl�w/¢g�gmk�umklk�ñlz�uw?�Dwi�gf/dgmksux�fi�ñ�Dwi�;yix�mk�uw/�+mznvlk�gw
w/dgfihkjgf/lkmzsun1�8�Dwiyimk}~mkyif/lkmzsun±�

��l�jg�;jgfihkhk�Jmk�¦ngsul��Dsu�;�8mk�uhkw¤lksY�uwi}�mznuwÐfÐyisDt1�Dhkwilzw¤�8w/l�sD}
f/�8�8w/x�lkmksung�ªlk�gf/l��uwi�;yix�mk�uw1lk�gwvw/¢g�uwiy/lkwi��y/sutv�usungwingl�§T���uw/�gf/dgmzsux
f/l�lk�gw��Dwioumzngnumzngo�su}�lz�gw1widgf/hzjufilkmzsDn��ux�suy/wi�8�)�)ýE�;mznuo��gwihk��}�mzhkwi�;�
dgw/ng�usux��ux�sudgmk�uw/�¤�Dsuyijut1w/nglkfilkmzsDn«f/ng�Ðf/ng�Ésulk�gwix�fidufimkhzf/�uhkw
�;sujux�yiw�ä�mkl�mk�a�usD�8�;mk�uhkwElzs+yisDng�8lkx�jgy/l�lk�gw?f/�8�;wix�lzmksunu�Ñx�w/�ux�wi�;winglkmznuo
lk�gwNwidgfihkjgf/lzsDx'§T��mkngmklkmkfihÑjgng�uw/x��;lzf/ng�umkngo�sD}
lk�gw�y/sutv�usunuwingl���Þªn
fi�;�;wix�lkmksun�dgmksuhkfilkmksun�suy/yijgx��
���uwin+lz�uwª�Dsu�;lz{�yisunu�umklzmksDnvf/�8�;wix�lzmksun
w/dgfihkjgf/lkwi�Pfi�#}�fihk�;w!�ª©2�gwinÐfingf/hk�RÒimkngo«lk�gw�x�wif/�8sun«}�sux�w/fiy/�
dgmksuhkfilkmksung��lk�gw�w/dgfihkjgfilksDxvtvfi�¬�Dwilkwix�tvmkngw�lk�gf/lªlz�gw�fi�;�;wix�lkmksunu�
f/x�wÌmkngfi�uw/ßujgfilkw��eÞª�<fÌx�wi�8juhzlk�ªlk�gwÌwidufihkjgf/lzsux�tvfi�Px�w/}~mkngw�lk�gw
w/dgfihkjgf/lzmksun1�8�uw/yimk}~mkyif/lkmksgn±�
þ�f/�8w/�ÙsunÙlk�uw´yisutv�usungw/ngl�§¨�²mknglkw/x�}~f/yiw´f/ng�Ùmklk�²}~sux�t1f/h
w/dgfihkjgf/lzmksun �;�uwiy/mk}~mkyifilkmksun lk�gw w/dgfihkjgf/lkmzsun w/ngogmkngw!ÜíÓ'ÅZÔ
ogw/ngwix�filkwi��mkng�DjglkÓ��;Ô��1Ó�ûDÔ�w/¢gwiyijulzw/��lk�gw2yisutv�usDngwingl��?mklk��lk�gmk�
mkng�ujulz�ªf/ng�u�ªÓ�ÿuÔ�wi¢uwiy/jglkwi��lk�gw�yisu�uw�x�wi�ux�w/�8w/nglkmkngoPwi¢gw/yijglkf/�uhkw
fi�;�;wix�lzmksunu�)�Dc�fiyi��lkmztvw+finNfi�;�8w/x�lkmzsDn�dumzsDhzf/lzmksunNmk�ª�uw/lkwiyilkwi�D��lk�gw
mkng�ujulEfinu�Psujglk�ujulEfix�w�hksuouogwi�2}~sux�lk�gw�}�jglkjgx�w�x�widgmkw/�+�����gw/�8w
lk�gx�w/wç�;lkwi�u�Yfix�wçx�wi�Dwifilkwi�Îjgnglkmkh��;�uw/yimk}~mkwi�°x�wi�;sujgx�yiwi�Sfix�w
w/¢g�gfiju�8lkwi�u��w�� o�� �NlkmktvwÉhzmktvmklz��ngjgtv�uw/x¬su}Ìyif/�;wi������}�f/hkh<lk�gw
�Dwi�8mkogngf/lzw/�Éx�w/�8sujux�y/wi�Ìf/x�wÊw/¢g�gf/jg�8lkwi�Éfinu�Éngs5dgmksuhkfilkmzsDng��sux
w/¢gyiw/�ulkmksung��f/x�w¤�uwilkw/yilkwi�D��lk�gwÐ�uw/dgwihksu�uw/x#tvfi�à�ufidgw«tvsux�w
y/sung}~mk�uwinuyiwçlk�gf/l¦lk�gwçyisutv�usungw/ngl¦�gfi�Jlk�uwËyi�gf/x�fiy/lkwix�mk�;lzmky/�
�uw/�8yix�mk�uwi�1mkn�lk�uw�w/dgfihkjgf/lkmzsun1�8�Dwiyimk}�mzy/filkmksun��
� w/ngwix�filkmkngo�mznu�ujglñ�ufilkfN}~sDx?mknglkw/x�}~f/yiwN�ux�su�umkngo�mk�1duwix��q�8mkt1mkhkfix
lks�lkwi�;l�yif/�8w�ogw/ngwix�filkmzsDn��DÞ?�Ef�x�w/�8juhzlk��wi¢gmk�8lkmkngo�fijglksutvfilkwi�<lkwi�;l
ogw/ngwix�filkmksunSlksusuhk�¦fix�w¤jg�;wi�YmknYlk�gw¥yisutv�usungwinglÌwidgf/hzjufilkmksun
�Dx�sDyiwi�;�)�/�ew/�8l��uf/lzfªogw/ngw/x�f/lzmzsDng�!}~sDx��8sD}~lk��f/x�w/�Dmk�Ñlk�gwª�ux�suy/wi�;�ÑsD}
mk�uwinulzmk}~�Rmkngo¬f��8w/l
su}�lzw/�8l�yifi�;wi���8filkmk�;}~�RmkngoÌf��;wihzw/yilzw/�¬lkwi�8lkmkngo
yix�mzlkwix�mzsDn������gw�wi¢gmk�;lzmkngo�fijglksutvfilkwi��lkwi�;lñogwinuwix�f/lzmksun�lksusuhk�vyifin
�uw«yihkfi�;�8mk}~mkwi�àf/�Êx�f/ng�usuté�ufilkfÉogw/ngwix�filksux��8�N�uhkfiy/�g{��usu¢¥lzw/�8l
ogw/ngwix�filksux��;�E���gmklkwi{��usu¢Êlkwi�;l1ogwingw/x�filksux��8�Efing��x�su�Djg�;lznuwi�;�<lkwi�;l
ouwingw/x�f/lzsDx����qcefiyi�ÍsD}Élz�uwi�8w�lksusDhz�à�ufi�£mzlk�£�8lzx�w/ngoglk�g�£fing�
hkmkt1mklzf/lzmksunu�<�uwi�Dwing�DmznuoPsDn2lz�R�Dwi�<sD}�mkng�ujglk��fing�2mkng}�sux�tvfilkmzsDn
f/dgfimkhkfi�uhkw!��Þª��f<x�wi�;jghklz�Ñlk�gw�widgfihkjgf/lkmksgn�winuogmznuwNju�8wi�+fihkh�}~sujux�{
lkwi�;l�ogw/ngwix�f/lzmksDn�tvwilk�gsu�D�)�
`���� ½�»��¤½ �����
	 ¸ � ¸/¼ ��� »u¼
��fing�Dsut��uf/lzf�ogw/ngwix�filkmzsDn2ØTÿDÛªmk�+lk�gwN�ux�suyiw/�8�vsD}��;wihkwiy/lzmkngou�efil
x�fing�usutv�²yisutv�usungw/nglÎmkng�ujglk�Ýf/ng� lk�gwinÏw/¢gwiy/jglkmkngo�lk�gw
y/sutv�usungw/nglSsDnÙlz�uwi�;wímkng�ujglk�)���af/ng�usut mznu�ujglk�²yif/n��uw
f/jglksut1f/lkmkyif/hkhk�¦ouwingw/x�filkw/�«�ufi�;wi�«sun5fÊyisutv�usungw/ngl�mknulzw/x�}�fiy/w
�;�uw/yimk}~mkyifilkmksun+}�sux��;mztv�uhkwE�uf/lkf?lk�R�uw/�;�Dw!� o±� �Dmknglkwiogw/x��Dx�w/fihk�D�;lkx�mkngog�
f/x�x�f/�R�8�+w/lzy���îEsu��w/dgw/x��+}~sux�tvsux�wÊfi�udufingy/wi�5�ufilkf2lk�R�uwi��lk�gw
�uw/dgwihksu�DwixPt1jg�;l��ux�sudgmk�uw¤yisutv�usungw/ngl��8�Dwiy/mk}~mkyÐx�sujglkmkngw/��lks
ogw/ngwix�filkw�x�finu�usutvhk��dgfihkjgwi��}�sux�mkng�ujul
�uf/x�fitvwilkw/x���sDx@�ux�sudumz�Dw
}�suxqw/fiy/�Émznu�ujgl��ufix�f/tvwilkwixqf��8w/l�su}�dufihkjgw/�¬lks5�uwÊju�8wi�Émkn
x�fing�Dsut5ogw/ngwix�filkmksun��
\�
���������� »�� � ¸i¾ ��	 ¸ � ¸i¼ ��� »D¼
þ�hkfiy/���usu¢<lkw/�8lkmkngo<jg�;wi�@lk�gw��ux�suogx�fitY�8�uw/yimk}�mzy/filkmksun<lks��uwi�;mzoun
lkw/�8l_y/fi�;wi���)�e�?s�tvf�ïðsDx��uhkfiy/�g{~�usu¢+lkw/�8lkmkngo+tvwilk�gsu�u�af/x�wE�?mz�uw/hk�
jg�;wi�±Ü�wißDjgmzdufihkwingy/w+�Dfix�lzmklkmksungmkngo�fing�<�Dsujgnu�ufix���{�dgf/hzjgw+finufihk�R�8mk�
ØTûD��Å��DÛ'�@��nÐlk�gwi�;w¦t1w/lz�usu�u�P�ux�suoux�fit�mkng�ujulz�P}�fihkh�mknglksÐlk��s
yif/lzw/ogsux�mkwi��Ü�dgfihkmk��mkng�Djglk�vfing��mznudgfihkmk�qmkng�ujulz������n�w/ßujgmkdgf/hzw/ngyiwi�
�Dfix�lkmzlkmksungmkngoJmkng�Djgl��8�Dfiyiw«mk���Dmzdgmk�uw/�JmknglksJdgfihkmk�J�uf/x�lkmzlkmksung�

Ó�yisunglkfimkngmkngo�dgf/hzmk��mzng�Djglk�;Ô?fing��mkngdgf/hzmk���ufix�lzmklkmksung�vÓ�yisDnglkfimkngmznuo
mkngdgf/hkmz�²mkng�Djglz�;Ô'���e�gmk�£�Dfix�lkmklzmksunumzngo®mk�£�usDngw­�Dfi�;wi�Ísun®f
�ux�suogx�fitá�8�uw/yimk}�mzy/filkmksun��Ñ��wi�;l�y/fi�8w/��f/x�w¬�;wihkw/yilkwi��}�x�sutÎwif/yi�
dufihkmz�P�uf/x�lkmklzmksun#fing�Pwifiy/��mkngdgf/hzmk�P�ufix�lzmklkmksun���þ
sujgng�Dfix��R{�dgfihkjgw
f/ngfihk�R�;mk��y/sung�8mk�uwix����usujgnu�uf/x�mkwi�¬�uw/lk��w/winÉdgf/hkmk�Éf/ng�«mkngdgf/hkmz�
�Dfix�lkmklzmksDng�qfinu���;wihkwiyilk�qlkwi�;lvyifi�;wi��sun�lz�gw/�8w¬�Dsujgnu�ufix�mkwi�qfing�
f/x�sujgng�Ý�Dsujgng�Dfix�mkwi�)�¦��w/dgw/x�f/hSf/jglksutvfilkwi�Ù�uhkfiy/�g{��usu¢�lzw/�8l
ouwingw/x�filkmksun�lksusuhk�<Ø�ÅZÛEfix�wNf/dgfimkhkf/�uhkwN}�suxªogwinuwix�f/lkmkngoqlkw/�8lñyif/�8w/�
}�x�sDt£f1lkwi�;l±�8�Dwiyimk}�mzyif/lzmksDng��w!� o�� ���Dx�w/{~yisDng�umklkmksun�fi�;�;wix�lzmksunu�)���e�uw
w/dgfihkjgfilkmksun�wingogmkngw1jg�8wi���Dx�wi{�yisunu�umklzmksDn�fi�;�;wix�lkmzsDng�
lks�f/jglksutvfilkw
lk�gw2�ux�suy/wi�8��sD}N�Dhzf/yi�g{��usD¢�lkwi�;l�ogwinuwix�filkmzsDn�ju�8mkngo¦lz�gw2�8f/t1w
lkw/yi�gnumzßujgw/�ìw/t1�uhksu�Rw/�ómknÕlk�gwéw/¢gmk�8lkmkngoè�uhkf/yi�g{��usu¢èlkwi�8l
ouwingw/x�f/lzsDx����
` » ��� ¾ ��� ¸/¾8¾ � ¸/¾ ��	 ¸ � ¸i¼ ��� »u¼
ÞYyisutv�usDngwingl
mk��x�su�Djg�;l�mk}Emkl�yifin�}~jungyilkmksun�yisux�x�wiyilkhk�q�uw/�;�umklzw
mkngdgf/hkmz��mznu�ujglk�;��wi¢gyiwi�DlkmzsDngfihÑmkng�ujglk�;��fing���8lkx�wi�;�;}~juh�yisDng�umklkmzsDng�)�
���gw/x�w+w/¢gmk�8l�f+ngjut1�uw/xasu}ñx�su�ujg�8lkngw/�8�ªlkwi�8l�ouwingw/x�f/lzsDx���Ø�ÅZÿu�aÅ��u�
Å��uÛZ��æ�sDx�wi¢gf/t1�Dhzwi��þ
fihkhkmz�;lkfNØ�ÅÇÿuÛÑmz��f@lkwi�;l�ogwinuwix�filkmksun�lksusDh_lk�gf/l
ouwingw/x�filkwi��mznu�ujglk���gfidgmkngo�f¬�umzog�Ê�Dx�sD�uf/�umkhzmklk�2su}�yif/jg�;mzngo�fin
w/¢gyiw/�ulkmksung��w�� o�� ��f�yix�f/�8���Eæ�x�wißujgw/nglkhk�R���8jgy/�«lkwi�;l�y/fi�;wi��f/x�w
�Dwi�uw/ng�Dwinglesun�f�yisDt1�usunuwingl�§¨�Emkng�ujul��uf/lzf�lk�R�uw��Dæ�suxaw/¢gfitv�uhkwi�
}�sux1rà�usumknglkwix���mkng�ujgl�dgfihkjgw/��ogw/ngwix�filkwi�¬tvfi��mznuyihkjg�uw! Eý�"#"
f/ng�%$�Åuäu}~suxÑfin�mknglkwiouwixe�uf/lkf@lz�R�Dw@mkng�ujul_dgf/hkjgwi�
ogwinuwix�f/lzw/��t1f/�
mkngy/hzjg�Dw�Èu��ÅZ��{'ÅZ�±t1f/¢gmztvjgtàmknglkwiogw/xadgfihkjgw/��tvfi¢gmktvjgtàmknglzw/ogwix
dufihkjgwÌt1mkngju�¬ÅÇ�ªt1mkngmkt1jgt¯mznglkwiouwix�dufihkjgwi�ªtvmzngmktvjgt²mknglzw/ogwix
dufihkjgwv�uhkjg�+ÅD�R|Ejgxñwidufihkjgfilkmksun�w/ngogmkngw�ouwingw/x�f/lzw/�
x�su�uju�8l±mzng�Djglk�
�;mkt1mkhkfixvlksPlz�uw�mkng�ujglk�Nogw/ngwix�f/lzw/�#�D�¬lz�uw�wi¢gmk�;lkmzngo�x�su�Djg�8lkngw/�;�
lkwi�;l!ouwingw/x�f/lksux��)�
&�')(� ¸ ��� »�� � ¸i¾ ��	 ¸ � ¸/¼ ��� »u¼
©2�gmklkwi{~�Dsu¢�lkwi�8lkmkngo�mz�@lz�uw+�Dx�sDyiwi�;�Esu}amk�Dwinglkmz}��Rmzngo�f+�;wil�su}ñlkwi�8l
y/fi�;wi�Ìlk�gfil��8filkmk�8}�mzw/��fP�;wihkwiy/lkwi�¦�;lzx�jgyilkjgx�fih�lkw/�8lkmkngo�y/x�mklkwix�mksung�
w�� o�� �®�8lkfilkw/t1w/ngl²y/sudgwix�fiogw/�ç�ux�fingy/�óy/sudgwix�fiogw/�çw/lky!�àÞªn
f/jglksutvfilkwi�����umzlkwi{��usu¢+lkwi�;l�ogw/ngwix�filkmzsDnvlksDsuh�ogw/ngwix�filzw/�amkng�ujul�sun
�?�gmkyi�qf��8w/hkwiyilkw/�qwihkwitvwinglk��w�� o�� ��f��8lkfilkwitvwinglk��mk�1wi¢gw/yijglkwi�±�!Þ
tvf�ïðsDxa�ux�su�uhkwitàsD}Ñ�Dx�w/dgmksujg�;hz���uw/�8y/x�mk�uw/�Nouwingw/x�f/lzmksDn�tvwilk�gsu�u�
mk�¦lk�gfil�lk�gwi�à�DsSngsDl�jg�8wÐmkng}�sux�tvfilkmksunJf/�usujul�lk�gw¤mznglkwix�ngfih
�;lkx�jgy/lzjux�w�sD}qfinÐfi�;�;wix�lkmzsDn«lksÐogw/ngwix�filkw�mkng�ujgl�dgmksuhkfilkmkngoÉlz�uw
w/¢gwiy/jglkfi�uhkwëfi�8�8w/x�lkmksungÓ��8ÔZ��Þªhzlk�gsDjgog�°�;sujgx�yiwëyisD�uwË}�sux¤lz�gw
y/sut1�usunuwingl�mk�NnusulEf/dgfimkhkf/�uhkwi���;sujgx�yiw�y/su�uw�}~sux�f/�8�8w/x�lkmksung��mk�
f/jglksutvfilkmkyifihkhk�°ogw/ngwix�f/lkwi�¯f/ng�¯tvfi�²�Dwçjg�;wi�¯�Djgx�mkngo°lk�gw
w/dgfihkjufilkmksunÝØ�ÅuÅZÛ'�#c�f/yi�µfi�;�8w/x�lkmksunµ�gfi��fÍ�8�Dwiy/mkfihÉ�;sujgx�yiw
�;lzf/lkwitvwinglEÓ�lkfix�ouwilE�;lzf/lzw/t1w/nglkÔ����gsu�;w�w/¢gwiy/jglkmzsun#mkng�umkyifilkw/��f/n
f/�8�8w/x�lkmzsDn�dgmksuhkfilkmksun��g�e�gwvogsDfih�}~sDxñlz�gwvwidufihkjgfilkmksun�w/ngogmkngwvmz�?lks
}�mznu��lk�gw¬yisutv�usungw/ngl�mknu�ujgl�sunÊ�?�gmkyi�Êf�lzf/x�ogw/l@�;lzf/lkwitvwingl�mz�
w/¢gwiyijulzw/�±�eÞ?��f�x�wi�;jghklk��lk�gw�wi¢gmk�;lzmkngoPtvwilk�gsu�D��su}+fijglksutvfilkwi�
�?�gmklkwi{��usu¢1lzw/�;l��ufilkf?ogwinuwix�f/lzmksDn�fix�w�fi�D�uhkmkyif/�uhkw!�
©2�gw/n�lk�gw��8sujux�y/w�y/su�uw�su}�f�ra|E���Ìyisutv�usungwinulemk�@f/dgf/mzhkf/�uhkwi�
f/hzh�su}elz�uw@wi¢gmk�;lkmznuo�lzw/�8l_ogwinuwix�f/lzmksun+tvwilk�gsD�u�ayif/nv�DwEjg�8w/�u��w!� o�� �
Ø*�u���D��+u���u�_Úu��Æu�eÅZÈu��Å�+uÛ'�)îEsD��w/dgwix���mkn�t1sD�8l_y/f/�8w/��lz�uw@�8sDjgx�yiw
y/su�uwvsu}�fvra|E�e��yisutv�usungw/ngl�mk��nusul�f/dgfimkhkf/�uhkw!�R��n��8juyi��y/fi�8w/�8�
sDnghk�Éwi¢gwiy/jglkmzsDng{~sDx�mkwinulzwi�¤lkwi�;l�ouwingw/x�filkmzsDn«tvwilk�gsu�D��tvfi�5�uw
ju�8wi�qØ*�u��Æu��ÅÇÈu��ÅuÅÇÛ'�/c�¢gw/yijulzmksung{�sux�mkwinglkwi�+lkwi�8l�ouwingw/x�f/lzmksunv�8lkfix�lk�
�D�Émkngmklzmkfihkhk�Éwi¢gw/yijglkmkngo«f�y/sutv�usDngwinglN�?mzlk�«f/x��umklkx�fix��Émznu�ujgl��
©2�gw/n�f��usD�8lk{~yisDng�umklkmksun�fi�;�8w/x�lkmzsDnqmk�vwi¢gw/yijglkwi�u��mklz�vw/¢gwiyijglkmksun

}�hzsD�Ùmz�Ét1sDngmzlksDx�wi�±��ÖEjgx�mkngoYlz�uw¤fi�;�;wix�lzmksunYwi¢gw/yijglkmzsDng�qlk�gw
w/dgfihkjgf/lkmksun¤w/ngogmkngw��uw/yimk�uw/�#�?�gwilk�uwix�lk�uw�w/¢gwiy/jglkmksunÐ�8�usujghk�
y/sunglkmznujgw
lz�gx�sujuog�ëlk�gw
y/jgx�x�winulÊ�ux�fingy/�ësDxÉfin®fihklzw/x�ngf/lzmkdgw
�ux�fingy/�ì�;�gsujghk�¶�uwálkfi�gw/n��Êæ_suxYw/¢gf/t1�uhkw/�«lk�gw¯y/jgx�x�winulzhk�
w/¢gwiy/jglkwi���ux�f/ngy/���usuwi��ngsDl�hzw/fi��lks�lk�gwEwi¢gw/yijulzmksun+su}�lk�gwElkf/x�ogw/l
�;lzf/lkwitvwingl�����}�fin�jgng�uw/�8mkx�f/�uhkwqw/¢gwiy/jglkmksun¬}~hksu�Yf/l?lk�gwqy/jgx�x�w/ngl
�ux�fingy/�èmk�ísu�u�8w/x�dgw/�u��lk�gwinèfÝx�wif/hk{~dgf/hkjgwi�è}~jgnuyilkmksunêmk�
f/�8�8sDyimkfilkw/�P�?mzlk�Plk�gw��ux�finuyi���eæ�jgnuyilkmksun#tvmkngmztvmkÒifilkmksun��;wif/x�yi�
fihkogsDx�mklz�ut1��fix�w�ju�8wi��lzs�fijglksutvfilkmkyifihkhk�Ê}~mkng��ngw/�çmkng�Djgl�lk�gf/l
�?mkhzh�y/�gfingouw�lk�gw?}~hksu�2wi¢gw/yijglkmksun1fil�lk�gmk�Ñ�ux�fingy/���
, ö.-Eù�öa`EÀ;õÊöaÁª^
���gwEt1fðïðsux�ogsDfih_su}�lk�gwEwi¢g�uw/x�mktvwingl_��f/�Ñlks+�uwilkw/x�tvmkngwª���gw/lk�gwix
f/jglksut1f/lkwi�¯mknglkwix�}~f/yiwç�ux�su�umkngo°jg�;mznuo°fçx�wihkfilkmkdgw/hz�²�;mztv�uhkw
}�sux�tvfih1widufihkjgf/lkmzsunÊ�;�uw/yimk}~mkyif/lkmksunPy/sujghk�2f/�uwißujgf/lzw/hk�#w/dgfihkjufilkw
yisDt1tvw/x�yimkfih�ra|E�e�2y/sutv�usunuwinglk���_��sÌt1mkngmkt1mkÒiw<�;jg�Zïðwiy/lkmzdgmklk�R�
�?wq�uw/yimk�uwi�#lzs�w/dgf/hzjufilkwqlk�uwq�8f/t1w�yisutvtvwix�y/mkfih?y/sut1�usungw/nglk�
w/¢gmz�;lzmkngo mkn �;widgw/x�f/hÏ�umk}~}�wix�winglÏw/ngdgmkx�sungtvwinglk�)�é�e�uwi�8w
y/sut1�Dsungwinulk�<��w/x�wÌw/¢g�uwiy/lkwi�ÊlksÊ�ux�sudumk�uwÌlk�gw��8f/t1w��uw/�gfidumzsux
f/yix�su�;��fihkhEw/ngdgmkx�sungtvwinglk����Þª��f�x�wi�;jghklk��lk�gw�su�Zïðwiy/lzmkduw�su}vlk�gw
w/¢g�uw/x�mktvwinglÕ�?fi�×lks jg�8w sujuxÏfi�u�ux�sufiy/� lks �uw/lkwiy/l
mkngyisDng�8mk�;lzw/ngyimkwi�Ñmkn�lk�gwi�;w?ra|E�e��yisutv�usDngwinglk���
��n+sujgx�w/¢g�uw/x�mktvwinglk����wE�;wihkwiyilkwi���;widgw/x�f/h�}�jgngy/lzmksung�a}�x�sut«lk�gwEr
�;lzf/ng�ufix���hkmk�ux�f/x���fi��ra|E�e�Ìy/sut1�usunuwinglk���q��n<lk�gw�w/¢g�uw/x�mktvwinglk�
�?w�ju�8wi���8mkt1�Dhkw�}�sux�tvfihawidgf/hkjgfilkmksunq�;�uw/yimk}~mky/filkmksung��w/¢g�ux�w/�8�;wi�
mknPlzw/x�t1�<su}+fi�;�;wix�lkmzsDng�)�e�e�gw/�8w�fi�;�;wix�lkmksung���Dmz�Pngsulªy/sudgw/xvfihkh
fi�;�Dwiyilk��sD}�y/sutv�usunuwingl�§¨��}~jgnuyilkmzsDngfihkmklz�_äelk�gwi���?wix�w�x�w/hzf/lzmkdgwihk�
�;mkt1�Dhzw fi�;�;wix�lkmksung� yifi�Dlzjux�mkngo x�wihkfilkmksunu�8�gmk�u� �uwilk�?wiwin
y/sutv�usungw/ngl�§¨�1mzng�Djglz�1finu�qsujglk�ujglk�)���e�gw��8lkf/x�lkmznuo��usumknglÑ}~sux?lk�gw
fi�;�;wix�lkmksun��Dwidgw/hksu�utvwinglv�?fi��lk�gw¬�gwihk��}�fiyimkhkmzlk�2su}�lk�gw¬lkfix�ouwil
y/sutv�umkhzw/x���sDxasulk�gwixa�Dsuyijut1winulzf/lkmzsDn��Ræ_x�sDt¥lk�gw/�8wv�uw/�;yix�mk�ulkmksunu�8�
mkngmklkmzf/h�fi�;�;wix�lkmksung����w/x�wÐ�Dwidgw/hzsD�uw/�Sfing�Ylk�gwinàtvsu�umk}~mkwi�Sfi�
w/¢g�uwix�mzw/ngy/w �?fi��ogf/mkngwi����mklk�ólk�gw y/sut1�usungw/ngl��à���gwi�;w
f/�8�8w/x�lkmzsDng�Ñ��w/x�w?dgwix��@w/fi�8��lzsv�uw/dgwihksu���
Þªjglksutvfilkw/�Nmknglkw/x�}�fiy/w+�ux�su�umknuo��?fi�ªjg�;wi��}~suxaw/fiy/��y/sutv�usungwinul
mknµ�umk}~}�wix�w/nglÉr./)/�winudgmzx�sungtvwinglk���¬��l«��f/�­w/¢g�uwiy/lkwi�álk�ufil
�;lzf/ng�uf/x��Êr­hkmz�Dx�f/x��#}~jgnuyilkmzsDng��Ó�y/sutv�usungw/nglk�8Ô��8�usujghk�P�Dwi�ufidgw
yisDng�8mk�;lkwinglkhk�2mznÊf/hzh�hzmk�;lkwi�Êwinudgmzx�sungtvwinglk���e��nPlk�gwÌw/¢g�uw/x�mkt1w/ngl
lk�gw<}~sDhkhzsD��mkngo�wingdgmkx�sDngt1w/nglk�+��w/x�w�jg�8wi��Ü10�mkyix�su�8sD}~l�§¨�32Emz�;jgfih
r�4zr�/)/_��þ�sDx�hkfing�<þ�jumzhk�Dwix5�D��þ
sux�hkfinu�N��jgx��DsNr�4kr./)/��6"��� Eý�7
� Eý�r�4kr./)/_�D� � � � Eý�r.4kr./6/Ñ�
Þ yisutv�usDngwinglçmznuyisung�;mk�8lkwingy/� mz�íf��;mklkjgfilkmksunê���uwix�w�f
yisDt1�Dsungw/nglk����mklk��lk�gwv�8f/t1wvmznu�ujglk�_�uw/�gf/dgwi�?�umk}~}�wix�w/nglkhz��f/yix�sD�8�
w/ngdgmkx�sungtvw/nglk�8�am�� w�� �af�y/sut1�usunuwingl
�ux�su�ujuyiw/���umk}~}~w/x�w/ngl�x�wi�8juhklk�
sDnÎlk�gw®�;fit1w®mkng�ujul5mznÎ�umk}~}�wix�w/ngl5wingdgmkx�sDngt1w/nglk���Ì��n¯lk�gw
wi¢u�uwix�mztvw/nglz�ª�usD�8lk{~y/sung�umklkmksun2fi�;�;wix�lkmksung�<�?wix�w�ju�8wi�2lks2�uwilkwiy/l
yisDt1�Dsungw/nglªmznuyisunu�8mk�8lkwinuyimkwi����Þ�yisutv�usDngwinglªmkngyisDng�8mk�;lkwingyi��mz�
�uw/lkwiyilkw/�����uwin�f�yisutv�usungwinul_�?mklk��lk�gw@�8f/t1w�mkng�ujgl��ux�su�ujgy/wi��f
x�w/�8juhzlalk�gf/ladgmzsDhzf/lzw/�+lk�gwNf/�8�;wix�lzmksun�mkn�sDngw�wingdgmkx�sunut1winulñ�ujglñmkl
�usuw/�Ñnusul�dgmksuhkfilkwªlk�gwªfi�;�8w/x�lkmksun1mknvfingsulk�uwix�wingdumzx�sungt1w/nglk�Dsux�lk�gw
yisDt1�Dsungw/nglk�1�?mzlk�¦lz�uwP�;fitvw2mkng�ujglk�vogwingw/x�filkwi��f/n�wi¢gy/wi�ulkmksun
y/sung�DmzlkmksunÌmknÌsunuw�wingdumzx�sDngtvwingl
fing�ÌngsDl�mkn�lz�uw<sulk�gwixZ�_��n�lk�gw
hkfilklkw/x
yif/�8wi��ngs<f/�8�8w/x�lkmksun�mk�Engwiy/wi�8�;fix����uw/yifiju�8w�lk�gw�wi¢uyiwi�ulkmksun
y/sung�Dmzlkmksun1mk�Ñ�uwilkwiy/lkwi�v�u�@lk�gw?wingdgmkx�sDngt1w/ngl��

æ_suxew/fiyi��y/sut1�usunuwingl�jgng�Dwixemkngdgw/�8lkmkogf/lkmzsunu��lz�uw@�8f/t1w@mknulzw/x�}�fiyiw
�ux�su�umkngo®�8lkx�f/lzw/og�ë��f/�¥ju�8wi�Ímknëw/fiy/�ër./6/µwingdgmkx�sDngt1w/ngl��
Ö@jgx�mkngoámknglkwix�}~fiy/wÍ�ux�su�umkngog�¦fihkh«fi�8�;wix�lzmksunádgmksuhkfilkmksung�
finu�
y/sux�x�wi�;�usung�umknuo¥mknu�ujglk�Ê��w/x�wÉx�wiy/sux��Dwi�±�1�e�uwi�8w«mkng�ujglk�Ê�?wix�w
lk�gw/n98ifi�u�Dhkmzw/��:�mkn�lz�uw�x�witvfimkngmkngo�wingdumzx�sDngtvwinglk�Elks<�uw/lkwix�tvmkngw
�?�gw/lz�gw/xe�;mztvmzhkfix�dgmksuhkfilkmzsDng��suy/yijgx�x�wi�±�/©2�gw/n+ngs�dgmksuhkfilkmzsDn+��f/�
su�D�8wix�dgwi�Êmkn2sungw�w/ngdgmkx�sungtvwinulk��f�y/sut1�usunuwingl@mkngyisunu�8mk�8lkw/ngyi�
�?fi���uw/lkwiy/lkwi�±�_©P�uwin�lk�gw��8f/t1w�fi�;�8w/x�lkmksun�dumzsuhkf/lkmksun�suy/yijgx�x�w/�
mkn2fihkhEwinudgmzx�sungtvwinglk�;��lk�gw�yisDng�umklkmksunP��fi�<ngsulEy/sung�;mz�Dwix�w/�Pf/n
mkngy/sung�;mz�;lkwingy/�_�
��nYlk�uw¥w/¢g�uw/x�mkt1w/nglk���?w£mkngdgwi�;lkmkogfilkw/�­Ú
yisutv�usungwinulk�)��©2w
�Dwilkwiy/lzw/��yisutv�usDngwingl_mznuyisung�;mk�8lkwinuyimkwi�amkn;++yisutv�usDngwinglk���Ç��n1lk�gw
}�suhkhksu�?mzngo�y/sutv�usDngwinglk�
mzngy/sung�;mz�;lkwingy/mkwi�a�?wix�wE�Dwilkwiyilkwi��Ü�filksDmzÓ�Ô��
�;mznuÓ�Ô��?�;lzx�ngyi�D�RÓ�Ô��ª�;lzx�yi�;�ungÓ�Ô��ªmk�8�umkoumzlkÓ�Ô��ªf/ng�Pmk�;fihkngjut1Ó�Ô'�e��nPlk��s
y/sutv�usDngwinglk�Ñwi¢uyiwi�DlkmzsDn�y/sung�Dmzlkmksunu��sDyiyijgx�x�wi���
|Ejux�mznumzlkmkfih±wi¢g�Dwix�mkwinuyiw@��mklk��lk�gw@fi�D�ux�sufiyi���ufi�
�8�usu�?n�lz�ufil_lk�gw
w/}~}�sux�l�x�w/ßujgmkx�w/��lks��uwidgw/hksu��}~sDx�tvfihñw/dgfihkjufilkmksunq�;�uw/yimk}~mkyif/lkmksung�
mkn+lk�gwE}~sDx�t«su}�f/�8�;wix�lzmksDng�a�uf/�R�asu}~}�mknv�uwilkwiy/lzmksDn1sD}±y/sutv�usunuwingl
mkngyisDng�8mk�;lkwingyimkwi���¶ýª�;mkngo wifi�;� lks �uw/dgwihksu� widufihzjufilkmzsDn
�;�Dwiyimk}~mkyifilkmksung�P��w¦��w/x�w�f/�uhkw�lks¤�Dwilkwiyil�mkngyisDng�8mk�;lkwingyimkwi�Pmkn
y/sutvt1w/x�yimkf/h�yisutv�usungw/nglk�)�
< bEÂ�ÁEbEøaÄE]�À;Â�ÁE]
��nÐlk�gmk�#�Dfi�uw/x�����w¦�ux�wi�;winulzw/�¤fin¤fijulzsDt1f/lzw/�Ðf/�u�ux�sDfiy/�«}~sDx
w/dgfihkjufilkmkngo+ra|E�e��yisutv�usungw/nglk�)�/�e�umz�af/�u�ux�suf/yi�+jg�;wi�ñmknglkwix�}~f/yiw
�Dx�sD�umkngoJlksSf/jglksutvfilkwÐlk�gwÐwidufihkjgfilkmksunà�ux�suy/wi�;�)�vc�dgf/hzjufilkmzsDn
�Dwiogmkng����mklz��lz�uw#�Dwidgw/hzsD�uwix��Dx�sDdgmk�umkngo�f#}~sux�tvfihvwidgf/hzjufilkmzsDn
�;�uw/yimk}~mkyif/lkmksun su} lk�gw y/sut1�usunuwingl��¡�e�gw w/dgf/hzjufilkmksun
�;�uw/yimk}~mkyifilkmksun�mk�Éfijglksutvfilkmkyif/hzhk�­lkx�finu�8hkfilkwi��mznulzs�wi¢uwiyijglkf/�uhzw
f/�8�8w/x�lkmzsDng�
lk�gf/l�f/x�w1jg�8w/���u��f/n�widufihkjgfilkmksun�w/ngogmkngw�lks�ouwingw/x�f/lzw
f/jglksutvfilkmzy/fihkhz��mkng�ujulz�@lzs<w/dgfihkjgfilkw�lk�gw�yisutv�usDngwingl�§¨�@�uw/�gfidgmksuxZ�
���gw«w/dgfihkjgf/lzmksunàwinuogmznuw«jg�8w/��lk�gw«w/¢gmk�8lkmkngoàfijglksutvfilkwi�àlkwi�8l
ouwingw/x�filkmksun+t1w/lz�usu�u�alks�ogw/ngwix�filkwªmkng�Djglk�a�ujux�mkngo+lz�uwªw/dgfihkjgfilkmksun
�Dx�sDyiwi�;���gÞªn�mkngmklkmzf/h±w/¢g�uw/x�mkt1w/ngl��gfi�?�;�gsD��n�lz�gf/l�lz�gwvfi�u�Dx�sDfiyi�
y/fin wi}�}~wiy/lzmkduwihk� �uwilkw/yilÙ�umk�8y/x�w/�gf/ngyimkw/��mkn y/sut1tvwix�yimkfih
y/sutv�usungwinulk�)�Ð�e�gw�tvf�ïðsux²f/�udgfinulzf/ogw�su}Ílk�gw³�ux�w/�8w/nglkwi�
f/�u�ux�suf/yi�£mk�Êlk�gfilqfi}�lkwix¬fÉy/sut1�usungw/ngl�§¨�Ê}�sux�t1f/h<widufihkjgfilkmksun
�;�Dwiyimk}~mkyifilkmksun1mz�Ñ�Dx�sDdgmk�uwi�vlk�gw�f/�u�ux�suf/yi��mk�Ñ}~juhzhk�@fijulzsDt1f/lkwi�±�
���gw2�ux�w/�8w/nglkwi�5fi�u�ux�sufiy/���gf/���uwiwin¦�uf/x�lkmkfihkhk��mktv�uhkwitvwinulkwi�±�
rajux�x�winglkhk�<��w�jg�8w�f��8mkt1�Dhzw�hzf/ngogjufiogw�lzs��Dwi�8y/x�mk�uw�widgf/hzjufilkmzsDn
�;�uwiy/mz}�mkyifilkmksung�)�q�e�umz�£hkfingoujgfiogw
�?sux��g�£}~mkngw­}~sDx¦x�wihkfilkmkdgwihk�
�;mztv�uhkw�y/sutv�usungw/nglk�)�±©2w��uhkf/n�lksÌ�uw/dgw/hzsu�Ìf<tvsux�w<�usD��w/x�}�jgh
}�sux�tvfih+hzf/ngogjufiogwPlz�ufil+yif/n��uwPjg�8w/��lks��Dwi�8y/x�mk�uw#widgf/hzjufilkmzsDn
y/x�mklkw/x�mkf+su}ñt1sDx�w+yisutv�uhkw/¢�ra|E����y/sutv�usungwinulz���g©2wvfihk�;s��uhkf/n
lks �uw/x�}�sux�t f�hkfix�ogwix�wi¢g�Dwix�mktvwinulálks �uw/lzw/x�tvmkngw�lk�gw
w/}~}�wiy/lkmkdgwinuwi�8�
su}�lk�gw@�Dx�w/�8winulkwi��fi�D�ux�suf/yi��f/ng��lks+�Dwidgw/hksu�+nuwi�
tvwilk�gsD�u�@sD}afijglksutvfilkwi�<mkng�Djgl�ogw/ngwix�filkmzsDnNlk�gf/l�yif/nN�Dw�jg�8w/�<mzn
lk�gw?w/dgfihkjgf/lkmzsun1�ux�suy/wi�8���
= `Eö.>�ö�`ªö�ÁªbEöa]
Ø�ÅZÛ?0��Pþ�fihkyiw/x��É© îEfi�;hkmkngog�É�?�P|E�;lkx�f/ng�u�Sp�Þªjglksutvfilkmky

� wingw/x�f/lzmksDn�su}µ��wi�8l²�_yix�mz�ulk�³}~x�sut æ�sux�t1f/hÍ�ew/�8l
���uw/yimk}~mkyifilkmzsDng�)p����e�gmkx��¥���Rtv�±�EsDnÐ��wi�;lkmzngou��Þªngfihk�R�8mk�;�
fing�;2Ewix�mk}~mkyif/lkmzsDng�±ÅZÆDÚuÆu�D�u�±�Çû±ÅZÈD{~û±ÅÇÚ±�

Ø9ûuÛÕþ1�Yþ�wimkÒ/w/x��Íþ�hkfiy/�g{~þ�sD¢ò��wi�;lkmkngo��Y�ew/yi�gnumzßujuwi��}~sDx
æ_jgngy/lzmksungf/h_��wi�;lkmzngo�sD}���sD}~lk��f/x�w@fing���_�R�8lkwitv�;�!©2mkhzwi�;@
�_sung�;�±ÅZÆDÆ��±�

Ø9ÿuÛÕÖ��gþ�mkx��D�_r��A0�jgngsDÒi��p�Þªjglksutvfilkmky�ogw/ngwix�filkmzsDn�sD}ex�fing�Dsut
�;wihk}~{�yi�gw/yi�gmkngo�lkwi�8lñy/fi�8w/�8��p?��þ�0á�_�R�8lkwitv�CB4sujgx�ngf/hk�D2Esuhü�
ûDûu�� Es±�ZÿD�±ÅÇÆuÚuûu�D�u���ZûuûDÆu{~û����±�

Ø*�uÛ?���!þ�sD�Rwix���þv�!c�hz�;�Dfi�;��E���"�w/dgmklklz��p���cD"�c�r��Ê{aÞÐ}�sux�tvfih
�;�R�8lzw/t }�suxËlkwi�8lkmkngo�fing�Ù�Dwi�Djgogogmkngo��Dx�sDogx�f/t1�Í�D�
�;�Rtv�usDhzmkyEwi¢gw/yijglkmksung��p��_� � â)"�ÞF G EsDlkmzy/wi�;�H2EsDhü�!ÅZÈD�� Es±�
+D�±ÅÇÆ����u�D�u���ZûDÿ��u{�û����±�

ØI�DÛ?"
�qr�hkfix��uwi�«p�Þ��;�R�;lzw/t lks²ogwingw/x�filkw
lkwi�;lÊ�uf/lzf
finu�
�;�Rt1�usDhkmzy/fihkhk�´w/¢gw/yijglkwÎ�ux�suoux�f/t1�;��p­��c�c�có�ex�fin��2sun
�_su}~lk�?fix�w�cengo�� ��2Esuh��ZûD�� Es±�Çÿu��ÅZÆ���+D�u�u���Zû±Å��u{~ûuûDû±�

ØI+DÛ?����ÖEwJ0�mzhkhksu�vÞ��
|E}~}�jglklz�<p�rasung�;lkx�f/mznglk{��ufi�;w/�¦f/jglksutvfilkmky
lkw/�8l��uf/lkf�ogw/ngwix�filkmksung��p
��cec�cP��x�f/ng�8f/yilkmksunu�EsunN�_su}~lk�?fix�w
cengo�� ��2Esuh��uÅ��u�� Es��ZÆD�±ÅZÆDÆ±ÅZ�D�u�±�ÇÆuÈuÈu{�Æ±ÅZÈ��

Ø*�uÛ?���Ñæ�w/x�ogju�8sunu�Eþ1�KEEsux�wihk��p��e�gwÌy/�gfimkngmkngo2fi�D�ux�suf/yi�2}�sux
�;sD}~lk��f/x�w<lzw/�8l
�uf/lzf<ogw/ngwix�filkmzsDng��p�Þªr.0ì�ex�fing����sun���su}�lü�
cengo���@L0�w/lk�gsu�±� ��2EsDhü���u�� Es��uÅZ��ÅZÆuÆ�+u�u�D�±��+Dÿu{~Ú�+��

ØTÚDÛÕ©«��îEsD���Dwing�¬p����Rtv�usuhkmky5lzw/�;lzmkngo¥fing�£lk�gw5ÖE���_��c�ra�
�;�Rt1�usuhkmky#widgf/hkjgf/lzmksunÊ�;�R�8lkwitv��p���c�c�cà��x�f/ng�8f/yilkmksung�qsun
�_su}~lk�?fix�w�cengo�� ��2Esuh��Z�_c�{~ÿD�� Es±���u��ÅZÆ����D�u�u���Zû�+�+u{~û��DÚ±�

Ø9ÆuÛÕþ1��EEsux�wihk��p�Þªjglksutvfilkw/�q�8sD}~lk��f/x�w�lkwi�8lÑ�uf/lkf�ogw/ngwix�filkmksunu��p
��c�c�cP�ex�finu�8f/yilkmksung�ªsunN��sD}~lk��f/x�w+c�ngo±� �62@suh���Å�+u�6 @s±�gÚu�
ÅÇÆuÆuÈD�u�D�±�ÇÚ��uÈu{�Ú��uÆ��

Ø�ÅÇÈuÛ�þ1�MEEsDx�wihk�qp�ÖE�Rngfitvmky�t1w/lz�usu�«}�suxq�;su}�lz�?fix�w�lzw/�;l��Dfilkf
ouwingw/x�f/lzmksunu��p5B4sujgx�ngfih±su}���su}�lz�?fix�w���wi�8lkmznuog��2Ewix�mk}~mkyif/lzmksun
f/ng�;�awihkmkf/�umkhkmklk�R��2@suh��Zûu��ÅZÆuÆuûu�D�u�±�ÇûuÈuÿu{~û�ÅZÿ±�

Ø�ÅDÅZÛ�þ1�NEEsDx�wihk� Þ��êÞªhk{POEfitvm�� Þ?�;�;wix�lzmksDng{~|Ex�mzw/nglzw/�
Þªjglksutvfilkw/�¥��wi�;l<ÖEfilkf � w/ngwix�filkmksun��³â�x�suy/wiw/�umkngog�Psu}
��ra��c�{'ÅZÚu��ÅZÆDÆ�+u�D�u�±���±ÅZ{�ÚuÈ±�

Ø�ÅZûuÛ�þ1�QEEsux�wihk�°p�þ�hkfiy/�g{�þ�su¢ ýEng�uw/x��;lzf/ng�umkngo su}Íra|E�e�
rasDt1�Dsungw/nglz�;��pR�TS UÑ��nglkw/x�ngfilkmksDngfih_©PsDx��g�;�gsu��sun+â_x�suogx�fit
rasDt1�Dx�w/�gw/ng�8mksunu�±ÅZÆuÆDÆu�D�u�±�ÇÆuûu{�ÆuÆ±�

Ø�ÅZÿDÛV ��WEEx�sD�u�u�ñp�ÞªjglksutvfilkmkyC�asu�Djg�8lkngwi�;�
��wi�8lkmkngo�su}�|E}~}�{~lk�gwi{
�_�gw/hk}Ñ�_su}~lk�?fix�w+rasDt1�usungw/nglk�8��p�r.0�ý�4k��rac�����wiyi�±�T�awi�±�
X È±ÅZ{�û��D{~ÆuÚ��

Ø�Å��uÛ�þ1�A0�mkhzhkw/x���wil±fih�� ��æ_jgÒiÒY��widgmk�;mklzw/�±ÜRÞ���wi{~w/¢gfitvmznufilkmksun�su}
lk�gw3��wihkmzfi�Dmkhzmklk��sD}Ñý� E��7ÐýElkmzhkmklzmkwi�ªf/ng����wix�dumzy/wi�;��ra�_�Z�
ÅÇû�+uÚD�uýEngmkd��Çsu}±©Pmk�8y/sung�8mkng{�0�fi�Dmz�;sung��ÅZÆuÆ����

Ø�Å��uÛ � ��0��Rw/x��;�!���gwEÞ?x�l�sD}���su}�lz�?fix�w?��wi�;lkmkngog�HB;sD�gn1©2mkhkwi�C@
�_sung�;�±ÅZÆ��uÆ±�

Ø�Å�+uÛ�r����af/t1f/t1sDsux�lk�g�R�����iîEsD�!©«�ira�gw/ng��p�|Envlk�gw?f/jglksutvfilkwi�
ouwingw/x�f/lkmksunYsD}P�Dx�suogx�fitèlkw/�8lÌ�Dfilkf/��pÊ��c�c�cÎ�ex�fin���sun
�_su}~lk�?fix�w�cengo�� �D��c�{�ûu�� Es±���u�±ÅÇÆ���+u�D�u�±�ÇûuÆuÿu{�ÿuÈuÈ±�

Ø�Å��uÛ[0��g�_yi�gtvmk�u��æÑ�gîEmkhkh���p�ÖEfilkf � winuwix�f/lzmksDn���wiyi�ungmzßDjgwi�E}~sux
Þªjglksutvfilkwi�Ê�_su}~lk�?fix�w\�asu�uju�8lkngwi�;�<�ewi�;lzmkngog��p����gw�Å�+Dlz�
��ngl��×rasDng}4� sun �ewi�;lzmkngo rasutv�ujglkwix ��su}�lk��f/x�w
Ó���ra�era��§TÆuÆuÔ��±ÅÇÆuÆuÆ��

Ø�ÅZÚuÛVBR�62Esufi�;�Ep�ra|@�e�2�_su}~lk��f/x�w<lk�gw<ceyisungsutvmkyif/hara�gsumky/wJ]�p��
��c�cecq��sD}~lk��f/x�w/��0�f/x�yi�W4kÞª�ux�mzh�ÅZÆDÆuÚu�D�u�±�DÅ�+u{4ÅÇÆ±�

Automating the testing of databases.

R A Davies*, R J A Beynon** and B F
Jones*.
*School of Computing, University of
Glamorgan, Pontypridd, CF37 1DL,
UK.
**Now at Pontypridd Technical
College, Pontypridd, UK

Radavies@glam.ac.uk

Abstract

We present a description of work in
progress that investigates the feasibility
of the automated production of test data
to both populate a database for load
testing and establishing the integrity of
the stored data. A prototype test data
generator has been produced that works
on a simple ACCESS 97 database. This
prototype performs the following basic
functions: -

• database table structure analysis
• setting field entry limits by parsing

validation rules
• valid & invalid test data generation
• error handling & recovery

Introduction

The aim of this work is to generate test
data automatically that checks

• the ability to store/retrieve,
update/delete records correctly

– query testing
• the variation in performance with

increased data and/or user numbers
– load testing
• the need to handle incorrect data (i.e.

not obeying data integrity
constraints)

– ‘correctness’ testing

Two of the functions that a fully
automated test data generator has to
provide are: -

• populate the database with valid data
for load/query testing

• produce invalid data to test the
constraints of the database by using
limits/boundary conditions values of
individual fields and referential
relationships.

Current commercial database test data
generators such as: -
– Test Byte 3
– Test Base
– DataTect

populate the database with random sets
of characters/numbers dependent on the
datatype of a given record field. The
more sophisticated types allow users to
define explicitly intrinsic and/or external
data sets as sources for fields requiring
names, cities etc to provide relevant
entries and/or user definition of value
ranges, permitted/forbidden values. Thus,
as they require user input to set up field
restrictions and knowledge of database
structure, these fail to be fully automated.
In addition, they fail to attempt to test the
‘correctness’ of the database by including
the production and error handling of
invalid data. A user-accessible log of any
such errors produced will be of use in
ensuring the database design satisfies
user-requirements on individual field.

The prototype system developed works
with Microsoft ACCESS. The software
interrogates the database for its structure
using the ACCESS table definitions;
followed by parsing the Validation Rules
obtained for individual fields to identify
any present ranges, specified
valid/invalid entry values etc. These
values may then be stored and used in

data generation without the need for user
input.

These conditions are then used to
generate both valid records to populate
the tables and records containing invalid
values to test the validation of a given
field. On entry the error would be
‘trapped’ and sent to an error log file and
the entry program then needs to recover
and move to next record (e.g. by
replacing with a valid default entry or by
deleting the erroneous record).

Since the database considered is
comprised of a single table only, no
testing of referential constraints is
required, the prototype concentrates on
testing of user/general constraints.

Database ‘Correctness’
The following is a brief discussion of the
concepts involved in the ‘correctness’ of
databases. It is not intended to be fully
comprehensive or mathematically
rigorous.
‘Correctness’ is defined in the IEEE
Standard Glossary of Software
Engineering as freedom from faults,
meeting of specified requirements and
meeting user needs & expectations. [1]

In terms of databases this can be
expressed as how successfully the
database: -

1. models the real-life system –
database design schema

2. the data store represents permitted
‘real’ possibilities only – i.e. data
integrity

The former in relational databases is
carried out within the Conceptual
Schema Level, in which the system is
designed in terms of Entities and their
Relationships (i.e. in the E-R models
etc.) [2].

The second is determined by ensuring
data integrity constraints are handled.
This can be done at either Internal or
External Schema Levels, that is with the
implementation of the database design
itself (Internal) or as part of the
application utilising the database
(External) [2].

For the purposes of test data generation
we will assume that the former method is
used (Internal Schema Level) and the
data integrity constraints are integral to
the database implementation. This is
likely to be the case since it is the safer
method for ensuring data integrity [2].

Within Relational databases the data
integrity constraints can be divided into
three types: -

1. Key/Entity, to ensure that all records
in a table are identified by a unique
identifying attribute and there are no
duplicates or null values.

2. Referential, if a record contains a
foreign key field. The foreign key
value must be a member of the set of
values contained in the primary key
field of the ‘parent’ entity or be null.

3. User/General and so relate to the data
of a given field. They may be set to
model the limits of the real-life
condition the user needs to store
information about.

[2]

From the above it can be seen that the
automated ‘correctness’ testing suggested
for the proposed data generator will
relate to the data integrity constraints.
However information on the database
structure could be deduced from any
error-log, providing an additional
opportunity to check original design
analysis.

In addition, for the limited scope of the
current prototype (single isolated table),

it can be seen that the concentration is on
the User/General constraints that are
defined in the ACCESS Validation Rules
since referential constraints are
irrelevant.

Much of the current research in the area
of database constraint testing is directed
towards the problems of distributed
databases [3,4 & 5]. In such databases,
where data is stored across several
individual dissimilar databases, it is
necessary to reconcile several possibly
heterogeneous components into a single
whole. This involves the problems of: -

• generating a single global design
schema from the constituent local
schema

• combining multiple sets of integrity
constraints into a single global set for
application across the distributed
system.

In terms of stand-alone databases, much
of the current research is directed toward
development of methodologies to draw
up complete test-plans for testing
database integrity [6]. That research
forms a basis for the preparation of test
data by independent means. However,
the further step of including test data
production itself is not considered.

Method

The separate processes carried out by the
current prototype are listed below: -

1. interrogate the table definition to get
its structure

2. store the structure
3. parse the validation rules for

individual fields to produce field
constraint data

4. use the results of the parsing to
generate data to that will populate the
database with a combination of valid
and invalid records

5. store the generated test data in a text
file

6. read the test data from the text file
into the database

7. catch any error generated and write it
to an error log and recover from the
error

Results
The prototype was developed and tested
with a simple table, ‘Customers’,
comprised of 6 fields of representative
data types (numeric, text, and date). In
addition, the validation rules were
written to contain the most commonly
expected types of restriction on fields
(upper/lower limits, permitted/non-
permitted values, lists and entry
patterns).

The Customer Table structure is outlined
below: -

Field Name Type Default
FirstName Text John
LastName Text Doe
Credit Currency £100
Gender Text M
IDNo Text ZZZZ000ZZ
DoB Date Today’s date

The validation rules on the fields were as
follows: -

Field Name Validation Rule
FirstName >”A”
LastName >=”A” AND <=”N”
Credit <=5000 AND >=0 AND <>1000
Gender Can be like “M” or “F” but not

like “X”, “Y” or “Z”
IDNo Can be like ZZ??###?
Dob Between 31/12/1949 and 1/1/2000

The Parsing of the Validation Rules
resulted in the following output: -

Field No 0

Field Name FirstName

Data Type No. 10

Validation Rule:[FirstName]>"A"

Rule Token # 0 [FirstName]

Rule Token # 1 >

Rule Token # 2 "A"

Range - Low A

Range - High

OK Values

Non Values

Value Pattern

Field No 1

Field Name LastName

Data Type No. 10

Validation Rule:[LastName]>="A" And <="N"

Rule Token # 0 [LastName]

Rule Token # 1 >=

Rule Token # 2 "A"

Rule Token # 3 And

Rule Token # 4 <=

Rule Token # 5 "N"

Range - Low A

Range - High N

OK Values A N

Non Values

Value Pattern

Field No 2

Field Name Credit

Data Type No. 5

Validation Rule:[credit]<=5000 And [credit]>=0

And <>1000

Rule Token # 0 [credit]

Rule Token # 1 <=

Rule Token # 2 5000

Rule Token # 3 And

Rule Token # 4 [credit]

Rule Token # 5 >=

Rule Token # 6 0

Rule Token # 7 And

Rule Token # 8 <>

Rule Token # 9 1000

Range - Low 0

Range - High 5000

OK Values 5000 0

Non Values 1000

Value Pattern

Field No 3

Field Name Gender

Data Type No. 10

Validation Rule:Like "[MF]" And Like "[!XYZ]"

Rule Token # 0 Like

Rule Token # 1 "[MF]"

Rule Token # 2 And

Rule Token # 3 Like

Rule Token # 4 "[!XYZ]"

Range - Low

Range - High

OK Values M F

Non Values X Y Z

Value Pattern

Field No 4

Field Name IDNo

Data Type No. 10

Validation Rule:Like "ZZ??###?"

Rule Token # 0 Like

Rule Token # 1 "ZZ??###?"

Range - Low

Range - High

OK Values

Non Values

Value Pattern ZZ??###?

Field No 5

Field Name DoB

Data Type No. 8

Validation Rule:>#12/31/49# And <#1/1/2000#

Rule Token # 0 >

Rule Token # 1 #12/31/49#

Rule Token # 2 And

Rule Token # 3 <

Rule Token # 4 #1/1/2000#

Range - Low 12/31/49

Range - High 1/1/2000

OK Values

Non Values

Value Pattern

Examples of the valid data generated are:
-

Nphhuat

Bkwujzw

 460.698

M

ZZZM210K

18/02/68

Lalx

Abx

 376.3512

M

ZZAP826Z

04/07/94

Examples of the invalid data generated
are: -

A
Byr
 1710.5961
F
ZZAK460S
27/01/64
Xuva
N*
 1930.2896
F
ZZQG986A
30/03/92
Cteqkb
Jhmqtzy
-1
F
ZZUT699J
01/03/89

The valid and invalid data files were then
merged into a single test data file. This
file was then used as input to the
database. A portion of the resulting error
log file is given below: -

 Table: Customers
Trapped Error # 3317
Error Description:-
One or more values are prohibited by the validation rule '|2'
set for '|1'. Enter a value that the expression for this field can
accept.
Record Number # 1
Field # 0 Name : FirstName
Invalid Entry : A

Table: Customers
Trapped Error # 3317
Error Description:-
One or more values are prohibited by the validation rule '|2'
set for '|1'. Enter a value that the expression for this field can
accept.
Record Number # 3
Field # 1 Name : LastName
Invalid Entry : N*

Table: Customers
Trapped Error # 3317
Error Description:-

One or more values are prohibited by the validation rule '|2'
set for '|1'. Enter a value that the expression for this field can
accept.
Record Number # 4
Field # 2 Name : Credit
Invalid Entry : -1

Restrictions/Limitations of Current
Prototype

- It works on single isolated tables
- The validation rule condition is

restricted to a value from its own
field only

- Referential integrity is not checked as
there are no foreign keys

- The available field data types are
restricted to Numeric, Text & Date

- Only a single range of permitted
values is allowed per field

- Only a single pattern format is
allowed per field (e.g. ??## #?? For a
Post Code)

- When an invalid data item is
encountered when entering record, it
is replaced with the default value in
Table Definition – note problem if
unique i.e. primary key.

Conclusion

The current prototype demonstrates the
feasibility of developing a fully
automated test data generator for
databases. It indicates that the basic
operations of such an application
(interrogation of database structure,
parsing of validation rules etc.) are
possible. This is shown by using a simple
ACCESS 97 database consisting of a
single table. Also it shows that the testing
of the data integrity constraints defined
in a database schema may be included in
an automated data generation/table
populating process.

As far as we know, both of the above
functions are beyond the capabilities of
currently available commercial data
generators. This indicates that proposed
full automation of data population and
the inclusion of a degree of testing will
reduce user input.

The areas for future development are as
follows: -
- Include ‘linked’ tables to represent E-

R design for a database to handle
referential data constraints.

- Additional functionality – extra data
types, use of defined data sets for
types of field names e.g. names,
towns etc.

- Make stand-alone – the present
prototype is directly attached to the
database in use.

- Automate the comparison between
the predicted error log and the actual
error log.

References

 [1] IEEE Standard Glossary of Software
Engineering Terminology,
‘IEEE Software Engineering Standards
Collection’, IEEE, (1994).

[2] Stanczyk S, ‘Theory & Practice of
Relational Databases’, Pitman, (1990).

[3] Gupta A et al., ‘Efficient &
Complete Tests for Database Integrity
Constraint
Checking’, Principles & Practice of
Constraint Programming:
Ed. Borning A, 874, 173-80, (1994).

[4] Reddy MP et al., ‘A Methodology for
Integration of Heterogeneous Databases’,
IEEE Trans. On Knowledge & Data Eng.
6,920-33, (1994).

[5] Reddy MP et al., ‘Formulating Global
Integrity Constraints During Derivation

of Global Schema’, Data & Knowledge
Engineering, 16, 241-68, (1995).

[6] Robbert MA,Maryanski TL,
‘Automated Test Plan Generation for
Database Application Systems’, Proc. Of
1991 ACM Symposium on Small
Systems, 100-106, (1991).

Static
Analysis

21

ATGen: Automatic Test Data Generation using Constraint Logic
Programming and Symbolic Execution

Christophe Meudec
Computing, Physics & Mathematics Department

Institute of Technology, Carlow
Kilkenny Road
Carlow, Ireland

+353 (0)503 70455
meudecc@itcarlow.ie

ABSTRACT
The verification and validation of software through
dynamic testing is an area of software engineering where
progress towards automation has been slow. In particular
the automatic design and generation of test data remains, by
in large, a manual activity. This is despite the high
promises that the symbolic execution technique engendered
when it was first proposed as a method for automatic test
data generation.

In this work, we propose, and implement, a new approach
based on constraint logic programming for the automatic
generation of test data using symbolic execution.

After reviewing the symbolic execution technique, we
present our approach for the resolution of the technical
difficulties that have so far prevented symbolic execution
from reaching its full potential. We then describe ATGen,
our automatic test data generator, which is based on
symbolic execution and uses constraint logic programming.

Keywords
Software Testing, Automatic Test Data Generation,
Symbolic Execution, Constraint Logic Programming

1 INTRODUCTION
Developing software that is correct and behaves as
expected is difficult. It is, at best, time consuming and
expensive. To address these problems we propose a general
approach using constraint logic programming and a tool for
automating the design and generation of test data for
software verification and validation.

Software verification involves checking that the software
respects its specification. Software verification techniques
include software inspections, formal proving of program
correctness, static analysis of programs and testing.

Software validation involves checking that the software as
implemented meets the expectations of the customer. It
includes software reviews and acceptance testing where the
software is exercised using tests provided by the customer.
The customer may also want the software to be tested for
particular circumstances for which tests have yet to be
devised.

While we focus on testing for software verification and
validation, we recognize that other techniques may be
complementary in this area (in particular software
inspections).

The testing phase can be supported by automatic tools.
Three main categories of automation can be distinguished
[34, 2]:

• Automation of administrative tasks, e.g. recording of
test specifications and outcomes (useful for regression
testing), test reports generation;

• Automation of mechanical tasks, e.g. the running and
monitoring (for testing coverage analysis purposes) of
the software under test within a given environment,
capture/replay facilities allowing the automation of
test suites execution;

• Automation of test generation tasks, i.e. the selection
and the actual generation of test inputs;

While the first two areas are being well served by
commercial tools—to a point that the expression
‘automatic testing’ is often used as a synonym for
automation of the tests execution only—the actual
generation of test inputs is mostly still performed manually
(with the exception of random testing).

It is in fact still the case that the automatic selection and
generation of test inputs remains a challenge for tool
developers [34].

This manual generation of test inputs implies that rigorous
testing is laborious, time consuming, and costly. It also
implies that rigorous testing is not actually widely applied.

The symbolic execution∗ technique, as proposed by King
[27] more than 20 years ago, has the potential to help with
the automation of the selection and generation of test inputs
for a variety of problems. However, this potential has so far
never been fully realized due to many technical problems
[12].

∗ symbolic execution is also called symbolic evaluation

For completeness we acknowledge that new test data
generation techniques with as wide a range of applications
as symbolic execution have been investigated, e.g. [18, 39].
Other techniques, with a smaller focus, have also been
proposed e.g. [30, 14].

It is our contention that our work places the automatic
generation of test inputs for a variety of applications, as
provided through symbolic execution, firmly in our grasp
as demonstrated by our tool, ATGen.

After presenting the symbolic execution technique and its
many potential applications, we review the traditional
technical problems attached to it. We then give an overview
of previous work in this area.

Our general approach for the resolution of the technical
difficulties associated with symbolic execution is presented
next. This general approach has been applied to a non-
trivial test generation problem resulting in ATGen, our tool,
which is presented and discussed before concluding.

2 SYMBOLIC EXECUTION
The symbolic execution of computer programs is an
automatic static analysis technique that allows the
derivation of symbolic expressions encapsulating the entire
semantics of programs. It was first introduced by King [27]
to help with the automatic generation of test data for
dynamic software verification. As we shall see, verification
is not the only important area where symbolic execution
can be used.

The Symbolic Execution Technique
Symbolic execution extracts information from the source
code of programs by abstracting inputs and sub-program
parameters as symbols rather than by using actual values as
during actual program execution. For example, consider the
following Ada procedure that implements the exchange of
two integer variables:

procedure Swap(X, Y : in out integer)
is
 T : integer;
begin
 T := X;
 X := Y;
 Y := T;
end Swap;

After actual execution of, say, Swap(5, 10) , X will be
equal to 10 and Y will be equal to 5, i.e. the values of X
and Y have been swapped. Actual execution provides a
snapshot of the semantics of the source code.

Using symbolic execution captures exactly and entirely the
semantics of the source code. This is performed by
associating the assigned variables with a symbolic
expression made up of input variables only. Here, we
denote symbolic expressions by delimiting them using
single quotation marks. In our example therefore, T is first

assigned to 'X' , X is then assigned to 'Y' and finally, Y is
assigned to the symbolic expression'X' .

Most programs are not simple sequential composition of
assignments. In particular, the presence of a conditional
statement, such as an if …then …else …, splits the
execution of programs into different paths. In general
therefore, symbolic execution records for each potential
execution path, a traversal condition. This path traversal
condition is the logical conjunction of the Boolean
conditions encountered by the path. This condition must be
satisfiable for the path to be feasible. Infeasible paths (i.e.
paths which cannot be traversed because no input data
exists which satisfies its path traversal condition) are not
uncommon and cannot be ignored.

Consider the example below where Max is a global integer
variable.

procedure Order(X, Y : in out integer)
is
begin
 if X > Y then
 Max := X;
 else
 Swap(X, Y);
 Max := X;
 end if;
end Order;

Symbolically executing the procedure Order we obtain
two paths:

1. Path Traversal Condition: 'X > Y'
Path Actions: Max = 'X'

2. Path Traversal Condition: 'Not(X > Y)'
Path Actions: Max = 'Y'

X = 'Y'
Y = 'X'

A more advanced example is provided later. We do not
review here, for lack of space, techniques for the actual
implementation of symbolic execution. Rather the reader is
referred to a comprehensive survey of implementation
techniques [6]. As we shall see, the difficulties do not so
much lie with the implementation of the symbolic
execution technique per se but more with the exploitation
of its potential.

Exploitation of Symbolic Execution
The verification and validation of software are the main
areas of applications for symbolic execution.

For completeness, we also mention that symbolic execution
can help with the following:

• software debugging, re-engineering and
comprehension [6] (e.g. by providing condensed
information about program paths);

• software optimization, simplification and
specialization [8, 28, 6] (e.g. by helping to identify
loop invariants which can be moved out of iterative
constructs, or by identifying unnecessary automatically
inserted exception handling code [33]);

• applications to formal specifications can also be found
[32, 29, 1];

Software Verification
We can distinguish four areas of interest:

• Automatic Test Data Generation for Coverage Testing

This is the first powerful usage of symbolic execution
historically identified [27]. It can be extended to include
data flow testing [5, 16].

Testing coverage criteria such as statement or decision
coverage [5] have as their objective the execution of all
statements or all decision outcomes, respectively, of the
program under test. A symbolic executor can generate the
path traversal condition of paths selected to achieve
complete coverage. The path traversal conditions can then
be sampled to obtain a set of test inputs which, by
construction, achieves 100% (excluding unreachable code
of course) coverage for the chosen testing criterion.

This application of symbolic execution requires the
implementation of a path selection strategy, the ability to
detect infeasible paths and the ability to sample satisfiable
path traversal conditions to generate test inputs.

This capability would save a lot of manual effort as well as,
typically, increase the level of overall coverage achieved.

• Automatic Test Data Generation for Path Domain
Testing

Using coverage testing, a particular execution path is only
tested once using a single test. It is often necessary
however, to generate several tests for a single path in order
to detect coincidental correctness [2, 12] or exercise the
path using ‘extreme’ values (as in boundary analysis [2]).

This can be achieved through analysis of the path actions
(e.g. to detect the use of the remainder operator ‘rem’ and
generate a constraint to distinguish its usage from the
modulo operator ‘mod’) or of the definition domain of
variables and by adding constraints to the path traversal
condition to force the generation of particular values.

This application requires the additional ability to generate
constraints depending on the context of execution.

This extra testing has the potential to greatly increase the
likelihood that errors will be detected in the program under
test.

• Automatic Test Data Generation for Run-Time Errors
Testing

Run-time errors occur when something unexpected occurs
during the execution of a program (e.g. division by zero,
access outside array bounds, variable overflow). They have
the potential to crash the operating system.

There are two ways of dealing appropriately with run-time
errors:

� Proving that the program is run-time error free;

� Inserting exception handling code to handle run-
time errors;

The first approach is sometimes applied to safety critical
software where it is acknowledged that preventing run-time
errors is better than controlling their effects [1]. This
approach falls within the remit of software proving.

Testing software that uses exception handling requires the
generation of test inputs which will trigger the run-time
error concerned. This can be achieved through specific path
traversal conditions generation (e.g. to ensure that the
denominator in a division takes zero for value) and
sampling for test inputs generation.

To achieve this, the functional requirements for a testing
tool are similar to the path domain testing application
discussed previously.

Generating test inputs to trigger run-time errors is, of
course, also necessary for programs that do not deal with
run-time errors appropriately.

• Helping with Software Proving

Software proving is concerned with formal software
verification. Symbolic execution is usually used to generate
proof requirements involving a formal specification of the
program under consideration [22]. Use of assertions for
proving interesting properties of the software under
consideration is also possible [1]. The proof requirements
are then proved, or refuted, independently using a theorem
prover. Theorem provers typically require human
interventions. The same approach can be used to prove the
absence of run-time errors [1].

This is the traditional role of symbolic execution during
program proving.

Another angle is to attempt the generation of a test input
negating the proof requirement [39]: if a test can be
generated the proof need not be undertaken as it is bound to
fail. Detecting instantly, at a low cost, that a proof will fail
is attractive: commonly, many of the proof requirements
attempted are unprovable and time-consuming to deal with.

This is applicable to proving that a program is run-time
error free, as the first step should be to try to generate
automatically a test triggering a run-time error.

Software Validation
Most of what we have discussed so far, under the software

verification heading, is applicable to software validation
except that the tests generation requests would originate
from the customer. The specific requirements of software
validation however are often overlooked.

For example, it would be attractive to generate tests on a
per scenario basis as proposed by the customer. Being able
to answer reliably and quickly questions such as ‘what
happens if such and such variables have such and such
values and this loop is taken 14 times?’ would be attractive.
The customer may also wish to execute the software under
consideration for everyday circumstances (e.g. avoiding
extreme values) or in special operational modes (e.g.
landing mode in a fly-by-wire software).

While the ability to generate and sample path traversal
conditions would be required as before, a new requirement
of our testing tool would also be necessary in our view. The
obvious way of dealing with such test generation requests
using symbolic execution would be through the judicious
placing of assertions in the program source code. However,
this is cumbersome for large programs. In our view, a
higher level of usability, through the development of
dedicated Graphical User Interfaces, is necessary to unlock
the potential of test data generators for software validation
purposes.

Traditional Difficulties with Symbolic Execution
Here we review the problems associated with symbolic
execution in general. We can distinguish two distinct types
of difficulties:

• Technical difficulties with the symbolic execution
technique per se;

• Practical difficulties with the exploitation of the
symbolic execution results;

Technical Problems
We can list in this category some features of programming
languages that are challenging to deal with.

For example, array references can be problematic where the
index is a not a constant but a variable—as is typically the
case—as the particular array element referred to is then
unknown. Symbolic execution can be performed in these
cases with the generation of ambiguous array references in
path traversal conditions [12]. The problem then is to
decide the satisfiability of the conditions generated.

Loops are also difficult to deal with appropriately. Bounded
loops can of course be unfolded as they do not create any
new path in the program. Loops which are input variable
dependent however, can be executed any number of times.
Hence, there is the dilemma of the number of times the
body of the loop should be traversed. Typically, symbolic
executors generate path traversal conditions with loops
executing zero, once or several times. This problem
however should be dealt with according to the testing
criteria under consideration and the feasibility or not of the

current path.

Procedure and function calls can be handled by in-lining
the sub-program code each time it is encountered or
symbolically executing it once and using the results at each
invocation [12].

Other characteristics of structured programming languages,
which are difficult to deal with using symbolic execution,
are dynamic memory allocation, pointers (especially
pointer arithmetic as is allowed in the C programming
language) and recursion.

Many of the technical problems faced by symbolic
executors have been discussed by Coward in [12] and by
Clarke and Richardson in [6].

It is our view that, although the generation of symbolic
expressions along a given path in a program is not without
technical difficulties, most of the restrictions usually
imposed by symbolic executors on the source language that
can be handled originate from the limitations of the
techniques used for path feasibility analysis and test data
generation [26] (i.e. practical problems associated with the
exploitation of the results of the symbolic execution phase).

Practical Problems
Most symbolic executors simply generate all the syntactic
paths in a program [1] (with special considerations for
loops). It has been remarked by Coward in his review of
symbolic execution systems [11], that this way of
proceeding, besides wasting a lot of effort (because it is a
purely syntactic process where feasibility of the
intermediate paths is not checked during generation), may
not be practical since a program may contain more paths
that can reasonably be handled. Better, would be to
integrate a path selection strategy within the symbolic
executor to generate as few conditions as is necessary to
achieve a particular testing criterion.

Further, and as we have seen, to exploit fully the potential
of the symbolic execution technique it is necessary to be
able to check the feasibility of the path traversal conditions
generated and, for testing purposes at least, to be able to
generate actual test data for feasible paths. Unfortunately,
and as highlighted in the next section, the complexity of the
path traversal conditions generated have, to date, proved
too high to be tackled efficiently and automatically.

In our view, it is that fundamental problem that has
hindered the wider use, and further development, of
verification and validation tools based on symbolic
execution rather than the perceived technical problems
traditionally associated with the symbolic execution
technique per se.

Related Work
Early research tackled the path feasibility problem using
linear programming routines and rule-based checks [12, 11,
36, 7].

The problem with this approach is the inflexibility of the
resulting tools. It may work well for conjunctions of linear
conditions over integers, but separate techniques need to be
used for, say, non-linear conditions over floating point
numbers.

Furthermore, path traversal conditions typically are logical
expressions over a mix of Boolean, integer, floating point
number and enumeration variables organized in arrays and
records: these cannot be solved using a single resolution
strategy. At best, a lot of preprocessing needs to be
performed before submitting subsets of a condition to a
particular constraint resolution technique.

Syntactic simplification rules, while of value towards the
representation of traversal conditions in a simplified form
[1], are unlikely to detect many infeasible paths as such.

Using a theorem prover, as illustrated in [26, 19], may
allow the handling of arrays where the index is not a
constant. However, while using axiomatic rules for proving
that a particular set of symbolic expressions over arrays is
unsatisfiable may be suitable, it cannot be applied to linear
expressions over, say, integers. Also, on their own, theorem
proving tools are not suited for generating test data
satisfying a particular path traversal condition.

So, while many separate techniques have been employed in
previous attempts at determining path feasibility, the sheer
complexity of most path traversal conditions has meant
that, in practice, the underlying language on which
symbolic execution is applied must be simplified and that
the complexity of the path traversal conditions must be low
for the approach to succeed (e.g. linear expressions over
either integer or floating point variables but not mixed
conditions where floating point and integer variables are
used).

Therefore, the source language typically handled by testing
tools based on symbolic execution is a small subset of its
original [12] and no test data generation facility is
provided: the tool only performs path feasibility analysis on
all the syntactic paths [19].

3 OUR APPROACH
Our underlying approach centers on the tighter integration
of the different sub-systems making up a test data generator
based on symbolic execution, by using a constraint logic
programming language. We have two overiding concerns:
reducing the amount of wasted effort during generation of
the symbolic expressions and enlarging the typical
programming language subset that can be efficiently
tackled by symbolic execution. Coincidentally, we are, in
effect, taking further the general ideas presented by Hamlet
in [21] for the rapid implementation of general testing
tools.

Closer Integration
To avoid the generation of many paths with unsatisfiable

path traversal conditions, and of paths which are not
required for the fulfillment of the testing criteria under
consideration, it is necessary to integrate the following,
traditionally separate, elements of a test data generator:

• Symbolic executor;

• Path selector;

• Path feasibility analyzer;

Doing so would make it possible to check, during their
symbolic execution, the feasibility of required paths only.
Thus, we would avoid the heavy overhead engendered by
the generation of unnecessary or infeasible paths.

While this approach is not a new proposal [12], its
successful implementation has, to date, been elusive.

Additionally, we must also provide the means for the
automatic sampling of satisfiable path traversal conditions
so as to generate actual test data for the, known feasible,
selected paths.

Constraint logic programming is the paradigm that has
allowed us to realize these aspirations.

Use of Constraint Logic Programming
As we have seen, we want to check the satisfiability of
algebraic expressions. I.e. given an algebraic expression,
along with the variables involved and their respective
domains, we must show that there exists an instantiation of
the variables which reduces the expression to true. In
effect, an algebraic expression constrains its variables to a
particular set of values from their respective domains. If
any of the sets are empty, the assertion is reduced to false
and is said to be unsatisfiable. Thus, an algebraic
expression is a system of constraints over its variables.

Hence, we have a Constraint Satisfaction Problem (CSP):
we want to search the variable domains for solutions to a
fixed finite set of constraints.

Constraint Satisfaction Problems (CSPs)
CSPs (see [17] for an informal introduction) are in general
NP complete and a simple ‘generate and test’ strategy,
where a solution candidate is first generated then tested
against the system of constraints for consistency, is not
feasible. Constraint satisfaction problems have long been
researched in artificial intelligence and many heuristics for
efficient search techniques have been found. For example,
linear rational constraints can be solved using the well-
known simplex method [13].

To implement the kind of solver we require, e.g. able to
work with non-linear constraints over floating point
numbers and integers, we could implement these heuristics
by writing a specialized program in a procedural language
(such as C, or using an existing solving routines library).
Nevertheless, although the heuristics are readily available,
this approach would still require a substantial amount of

effort and the resulting program would be hard to maintain,
modify and extend. Ideally, we would like to concentrate
on the ‘what’ rather than the ‘how’, i.e. we are more
interested in the problem of combining the heuristics rather
than in implementing the internal mechanism of each
individual heuristic search technique.

The advantages of logic programming, mainly under the
form of the Prolog programming language [4], over
procedural programming have long been recognized [21]:
the ‘what’ and the ‘how’ are more easily separated since
Prolog is based on first order predicate logic and has an in-
built resolution computation mechanism. However,
Prolog's relatively poor efficiency when compared to
procedural languages has hindered its general acceptance.

For CSPs, however, Prolog is still the language of choice.
Searches are facilitated by its in-built depth-first search
procedure and its backtracking facilities. However, even in
this area Prolog suffers from a general lack of facilities to
express complex relationships between objects (terms): the
semantics of objects has to be explicitly coded into a term.
This is the cause of the perceived poor mathematical
handling capabilities of Prolog when compared with its
other facilities: only instantiated mathematics can be dealt
with readily. Further, the basic in-built depth-first strategy
tends to lead to a ‘generate and test’ approach to most
problems: specialized heuristics must be implemented to
prune the search space.

Constraint Logic Programming
Constraint Logic Programming (CLP), as introduced by
Jaffar and Lassez [25], reviewed by Colmerauer [10] and
discussed in [9], alleviates these shortfalls by providing
richer data structures on which constraints can be expressed
and by using constraint resolution mechanisms (also known
as decision procedures) to reduce the search space. When
the decision procedure is incomplete—e.g. for non-linear
arithmetic constraints—the problematic constraints are
suspended, we also say delayed, until they become linear.
Non-linear arithmetic constraints can become linear
whenever a variable becomes instantiated (or bound). This
can happen when other constraints are added to the system
of constraints already considered or during labeling.

The labeling mechanisms further constrain the system of
constraints according to some strategy. It can be viewed as
a process to make assumptions about the system of
constraints under consideration. It is a very powerful
mechanism and it is used to awaken delayed constraints or
to generate a solution to an already known satisfiable
system of constraints.

To deal with non-linear problems, the labeling strategies
used are critical to the overall efficiency of the solver. A
discussion of constraint satisfaction using CLP can be
found in [24].

We now give an example of constraint resolution involving

integers.

In Prolog the equality:

X*X + Y = 10

results in failure, since in Prolog equality only holds
between syntactically identical terms and X is just a
variable of no particular type. Using a CLP language
however, it is possible to code the semantics of X and Y as
being integer-like and constrain them such that X*X + Y
= 10 holds. The constraint resolution mechanism will
detect the constraint as non-linear and reduce it as follows:

X = X, Y = Y
X*X + Y = 10 is delayed

I.e. the system of constraints is satisfiable (subject to
consideration of the delayed constraints) and a simplified
version is internally held. A labeling strategy must impose
further constraints on either X or Y for the satisfiability of
the system of constraints to be confirmed.

During labeling, a not so efficient strategy would select Y
to be sampled first. The sampling strategy would then
instantiate Y with, say, 2 thus awaking and simplifying the
delayed constraint to X*X = 8 . This constraint would
have to be delayed. The labeling strategy now attempts to
instantiate X repeatedly without success (because failure in
this case actually occurs on the entire definition domain of
X) which induces backtracking in the traditional, logic
programming, manner. Eventually Y is instantiated to
another value, say 1, thus reducing the constraint store to:

X = X, Y = 1
X*X = 9 is delayed

The labeling mechanism now attempts to awake the
delayed constraint: this can only be achieved through
instantiating X. Eventually X will be instantiated with -3 or
3 and the system of constraints will be declared satisfiable
and the sample, say, X = 3 , Y = 1 will also be available.
To succeed, this labeling strategy has generated thousands
(if the initial domain of the variables is of that order) of
futile assumptions.

A more efficient labeling strategy would recognize that X is
the variable on which the linearity of the delayed constraint
depends and attempt to constrain it first. Any value in the
domain of X will make the delayed constraint linear thus
allowing the constraint resolution mechanism of the
underlying solver to detect satisfiability directly. E.g. X =
-5 will awaken the delayed constraint and the solver would
directly yield:

X = -5, Y = -15

This latest labeling strategy is adequate as only one
assumption is made to yield a positive outcome.

It is this general approach that we have customized to be
applicable to path traversal conditions as generated during
symbolic execution.

CLP languages are ideal for our purpose as their in-built
resolution mechanism removes most of the needed
development effort and still offer the flexibility of logic
programming. In fact, they allow the rapid development of
efficient, dedicated, constraints solvers.

4 ATGen: AN AUTOMATIC TEST DATA
GENERATOR

ATGen is our prototype testing tool implemented using the
underlying approach outlined in the previous section.

The particular constraint logic programming environment
used to implement ATGen is ECLiPSe [15]. ECLiPSe is a
Prolog based system that serves as a platform for
integrating various logic programming extensions, in
particular CLP. ECLiPSe is distributed with many valuable
libraries implementing various constraint solvers (over
integers, rational numbers, sets etc.). Other similar
environments may well be as equally suited.

Current Area of Application
While it should be clear that our approach is general
enough to be applied to many structured programming
languages for a variety of purposes we have chosen the
initial area of application to be as compelling as possible.

Hence, the current area of application of ATGen is the
automatic generation of test data to achieve 100% decision
coverage of SPARK Ada programs.

Decision Testing
In decision testing [5, 2] the aim is to test all decision
outcomes in the program. Typical decisions are Boolean
expressions controlling the flow of execution in the
program such as in conditional constructs and loops.
Discounting infeasible decision outcomes [5] we aim to
generate a test data suite achieving 100% decision
coverage.

Note that the current implementation of our path selection
strategy is not aimed towards producing the smallest test
set possible but towards the fastest generation of a set of
tests achieving coverage. Thus, some redundant paths may
well be generated.

SPARK Ada
SPARK Ada [1] is a subset of the Ada programming
language designed in particular for the development of high
integrity software. It is the most popular Ada subset for
safety critical software.

Briefly, the following Ada features are excluded from
SPARK Ada: concurrency, dynamic memory allocations,
pointers, recursion, and interrupts. The reader is referred to
Barnes [1] for a complete definition of SPARK Ada.

Formally SPARK Ada is not just a subset of Ada, as it also

requires additional annotations to give extra information
about the program. This extra information can then be
handled by SPARK analysis Tools (such as the SPARK
Examiner [1]) to perform various static program analysis
tasks (such as data flow analysis [1]).

We however discard any SPARK annotations and only
consider the Ada constructs for our test data generation
purposes (ATGen however could easily be adapted to
handle FDL—Functional Description Language—
constructs making up the outputs of the SPARK analysis
tools [1]).

ATGen handles the entire SPARK Ada subset including
Boolean, integer, floating point (represented using infinite
precision rational numbers), enumeration types, records,
multi-dimensional arrays, all loop constructs, functions and
procedures calls. Further, there are no technical reasons
why we may not extend the Ada subset currently handled
by ATGen beyond SPARK.

Overall Structure
ATGen is composed of a pre-parser written in C and of
roughly 4200 lines of commented Prolog code divided in
seven modules.

The pre-parser transforms∗ the SPARK code into a list of
Prolog facts. This transformation is purely syntactical (e.g.
the first letter of variables is put into upper case, labels for
conditions are automatically generated). For interest, we
give below the parsed version of the second loop of
quotient, our next example.

while(cond(C2, T <> D), stmts([
 assign(Q, Q * 2),
 assign(T, T / 2),
 if(cond(C3, T <= R), then(stmts([
 assign(R, R - T),
 assign(Q, Q + 1)
])),
 elsifs([]), else(stmts([])))
]))

This intermediate representation of the SPARK source code
is compiled into ATGen as an ordinary Prolog program.

The symbolic execution of the program under consideration
is directed according to the testing coverage criteria chosen
and the feasibility analysis of the current subpath:
infeasible or redundant subpaths are immediately
abandoned and the system backtracks in an ordinary Prolog
manner. The path traversal condition of suitable paths is
sampled to generate test data. This entire process is
repeated, through backtracking, until the testing coverage

∗ this transformation is still partially performed manually,
but a parser is nearing completion using a YACC-like
parser generator.

criteria is fulfilled.

Below we give a rough estimate of where the development
effort was spent.

• 30% solving activities. Mostly concerned with
customization and extension of the solving capabilities
provided with ECLiPSe;

• 30% symbolic execution per se. Dealing with sub-
program calls, iterative and conditional constructs,
assignments;

• 20% source language features manipulation. Mainly
concerned with the data structures of the source
language (arrays, record, enumeration types);

• 10% labeling. Implementing overall and data type
specific labeling strategies;

• 5% path selection strategy implementation;

• 5% test report generation. In particular printing of
arrays, output domains;

The reader can infer from the above what effort would be
involved in extending ATGen (for another language, a new
coverage measure, improved labeling strategies etc.)

Characteristics and Limitations
We list below some interesting aspects of ATGen.

• The tests generated for coverage testing are designed
not to generate run-time errors (including avoiding
internal overflow of expressions);

• Using ATGen, actual test execution becomes
unnecessary since the actual test output is provided
along side the test inputs. However, it may still be
necessary, to comply with the independent verification
requirement of safety critical systems for example, to
actually execute the test generated;

• Annotation of the SPARK source code is not needed;

• ATGen can be used for integration testing purposes
[23] which is maybe the area where the manual design
of test data is the most difficult;

• ATGen itself need not be of high integrity: the actual
level of code coverage achieved can be checked using
a third party tool;

• Sometimes path feasibility will be too time consuming
to infer (mainly when the path traversal condition
involves complex non-linear relations between floating
point variables). Better heuristics for labeling and
advances in CLP languages in general should reduce
this problem in the future. Currently ATGen in such
situations issues a warning message indicating which
path has been considered infeasible by default;

Example
We reproduce, verbatim, an example given in [18] to
demonstrate the problems associated with symbolic
execution:

procedure quotient(n: Some_Integer,
 d: Some_Integer) is
-- calculate quotient and
-- remainder of the integer
-- division of n by d, (n>0, d>0)
 q: Some_Integer := 0;
 r: Some_Integer := n;
 t: Some_Integer := d;
begin
 while r >= t loop --C1
 t := t * 2;
 end loop;
 while t /= d loop --C2
 q := q * 2;
 t := t / 2;
 if t <= r then --C3
 r := r - t;
 q := q + 1;
 end if;
 end loop;
-- manipulate r and q;
end quotient;

The difficulties with quotient are that both loops are
input variable dependent and that the second loop must be
executed exactly the same number of times as the first loop
was for the path under consideration to be actually feasible.
Further, the path traversal conditions generated involve
non-linear arithmetic.

A typical ATGen output for the procedure quotient
using the decision coverage testing criteria is given below.

Path: C1 false, C2 false
Test Data: D = 10084, N = -20016
Test Result: T = 10084, R = -20016, Q = 0

Path: C1 true, C1 true, C1 false, C2 true,
C3 true, C2 true, C3 false, C2, false
Test Data: D = 5836, N = 12905
Test Result: T = 5836, R = 1233, Q = 2

We make several remarks about this result:

• The above result is generated in under 1.5 seconds on
average using a 450MHz Pentium III based machine;

• ATGen is non-deterministic: the actual paths and test
data generated may differ on subsequent runs;

• More information, than we have space here for, per
path is available (such as the actual path traversal
condition);

• The second path generated actually makes the first one

redundant for decision coverage purposes;

• The path traversal condition for the second path is: N
>= D and N >= D*2 and not(N >= D*2*2)
and D*2*2 /= D and D*2*2/2 <= N and
D*2*2/2 <> D and not(D*2*2/2/2 <= N -
D*2*2/2) and not(D*2*2/2/2 <> D)

5 FUTURE WORK
Below are our plans for future work on ATGen.

Demonstrating Practicality∗

We must better demonstrate the practicality of ATGen for
real world testing applications. Therefore, while we need to
evaluate ATGen using automatically generated code (as in
[18]), our main motivation should be to seek actively real
world software testing problems in the best engineering
research tradition [35].

Increasing Usability
If the potential of symbolic execution is to be realized,
ATGen must provide better ways for the vast amount of
information that can be generated to be channeled
efficiently to the human testers. Further, the execution of
the test data generator should be easy to parameterize to
facilitate software validation activities.

We believe that this requires the development of a
Graphical User Interface (GUI) with facilities to visualize
and manipulate the control flow organization of the
software under consideration. We have started work on this
aspect.

We remark that program analysis tools in general, need to
allow greater interaction with the user to expand
successfully in a software engineering environment [31].

Increasing Versatility
We would like to increase the number of test coverage
criteria handled by ATGen (in particular MCDC [5],
Modified Condition Decision Coverage, which is required
for airborne systems [38]), and expand into data flow
testing [5, 16].

Larger subsets of Ada than SPARK may also be considered
as well as other languages (e.g. Java [20] or C).

In addition, the application of ATGen in the area of run-
time errors testing deserves further investigations.

Increasing Performance
While we have been pleasantly surprised by the overall
performance of ATGen in terms of execution time and
capability at detecting immediately infeasible paths, we
recognize that further improvements may well be
necessary. In particular we need to investigate better

∗ It is hoped that further results will be available in time for
the workshop as well as a tool prototype.

labeling strategies including moved based heuristics such
as Hill climbing, Simulated Annealing and Tabu search
[15, 37].

6 SUMMARY
ATGen automatically generates test data for total decision
coverage of SPARK Ada programs.

It implements our general approach for solving the
traditional problems associated with the symbolic execution
technique.

Our approach is centered on tighter integration of the
various components making up a test data generator using
constraint logic programming. This use of constraint logic
programming is, to our knowledge, unique to our work.

We have presented our plans for future work and are
confident that ATGen will be successfully applied on real
world software testing problems in the near future.

ACKNOWLEDGEMENTS
Some preliminary results, concerning the work presented,
were obtained while the author was employed by the
University of York, UK.

REFERENCES
1. Barnes, J. High Integrity Ada: The SPARK Approach,

Addison-Wesley, ISBN 0-201-17517-7, 1997.

2. Beizer, B. Software Testing Techniques, 2nd Edition,
Van Nostrand Reinhold, ISBN 0-442-20672-0, 1990.

3. Bicevskis, J., Borzovs, J., Straujums U., Zarins A., and
Miller, E.F. SMOTL—A System to Construct Samples
for Data Processing Program Debugging, IEEE Trans.
Software Eng. 15:60-66, 1979.

4. Bratko, I., Prolog Programming for Artificial
Intelligence, 2nd Edition, Addison-Wesley, ISBN 0-201-
41606-9, 1990.

5. British Computer Society Specialist Interest Group in
Software Testing (BCS SIGIST), Standard for Software
Component Testing, Working Draft 3.3, 1997.

6. Clarke, L.A., and Richardson, D.J. Applications of
Symbolic Evaluation, J. Systems Software, 5:15-35,
1985.

7. Clarke, L.A., Richardson, D.J., and Zeil, S.J. Team: A
Support Environment for Testing, Evaluation and
Analysis, In Proceedings Software Engineering
Symposium of Practical Software Development, pp.
153-162, Nov. 1988.

8. Coen-Porisini, A., De Paoli, F., Ghezzi, C., and
Mandrioli, D. Software Specialization Via Symbolic
Execution, IEEE Trans. Software Eng., 17(9):884-899,
Sep. 1991.

9. Cohen, J. Constraint Logic Programming Languages,
Commun. ACM, 33(7):52-68, Jul. 1990.

10. Colmerauer, A. An Introduction to Prolog III, Commun.
ACM, 33(7):69-90, Jul. 1990.

11. Coward, P.D. Symbolic Execution Systems—A
Review, Software Engineering Journal, 3(6):229-239,
Nov. 1988.

12. Coward, P.D. Symbolic Execution and Testing,
Information and Software Technology, 33(1):53-64,
Jan./Feb. 1991.

13. Dantzig, G.B. Linear Programming and Extensions,
Princeton University Press, Princeton, New Jersey,
1963.

14. Demillo, R., and Offutt, A. Constraint-Based Automatic
Test Data Generation. IEEE Trans. Software Eng.,
17(9):900-910, 1991.

15. ECLiPSe Release 4.2, Imperial College London, 1999,
http://www.icparc.ic.ac.uk/eclipse/

16. Frankl, P.G., and Weyuker, E.J. An Applicable Family
of Data Flow Testing Criteria, IEEE Trans. Software
Eng., 14(10):1483-1498, Oct. 1988.

17. Freuder, E. The Many Paths to Satisfaction, In
Proceedings ECAI'94 Workshop on Constraint
Processing, Amsterdam, Aug. 1994.

18. Gallagher, M.J., and Narasimhan, V.L. ADTEST: A
Test Data Generation Suite for Ada Software Systems,
IEEE Trans. Software Eng., 23(8):473-484, Aug. 1997.

19. Goldberg, A., Wang, T.C., and Zimmerman, D.
Applications of Feasible Path Analysis to Program
Testing, In Proceedings ISSTA'94 (Seattle, WA, Aug.
1994)

20. Gosling, J., Joy, B., and Steele, G. The Java Language
Specification, Technical Report, Sun Microsystems,
Aug. 1996.

21. Hamlet, D. Implementing Prototype Testing Tools,
Software Practice and Experience, 25(4):347-371, Apr.
1995.

22. Hantler, S.L., and King, J.C. An Introduction to Proving
the Correctness of Programs, ACM Computing Surveys,
8(3), pp. 331-353, September 1976.

23. Harrold, M.J., and Soffa, M.L. Selecting and Using
Data for Integration Testing, IEEE Software, 58-65,
Mar. 1991.

24. Hentenryck, P.V. Constraint Satisfaction using
Constraint Logic Programming, Artificial Intelligence,
58:113-159, 1992.

25. Jaffar, J., and Lassez, J-L. Constraint Logic
Programming, In Proceedings POPL'87, pp. 111-119,
Munich, Jan. 1987, ACM Press.

26. Jasper, R., Brennan, M., Williamson, K., Currier, B.,
and Zimmerman, D. Test Data Generation and Feasible
Path Analysis, In Proceedings ISSTA'94 (Seattle, WA,
Aug. 1994) 95-107.

27. King, J.C. Symbolic Execution and Program Testing,
Commun. ACM, 19(7):385-394, 1976.

28. King, J.C. Program Reduction Using Symbolic
Execution, SIGSOFT Software Engineering Notes,
6(1):9-14, 1981.

29. Kneuper, R. Symbolic Execution: a Semantic
Approach, Science of Computer Programming, 16(3),
pp. 207-249, Oct. 1991.

30. Korel, B. Automated Test Data Generation for
Programs with Procedures, In Proceedings ISSTA'96,
pp. 209-215.

31. Le Métayer, D. Program Analysis for Software
Engineering: New Applications, New Requirements,
New Tools, ACM SIGPLAN Notices, 32(1):86-88, Jan.
1997.

32. Meudec, C. Tests Derivation from Model Based Formal
Specifications, In Proceedings 3rd Irish Workshop in
Formal Methods, Galway, Jul. 1999,
http://www.ewic.org.uk/ewic/.

33. Muller, G., and Schultz, U.P. Harissa: A Hybrid
Approach to Java Execution, IEEE Software, 44-51,
Mar./Apr. 1999.

34. Ould, M.A. Testing—A Challenge to Method and Tool
Developers, Software Engineering Journal, 6(2):59-91,
Mar. 1991.

35. Parnas, D.L. On ICSE's “Most Influential Papers”,
ACM Software Eng. Notes, 20(3), 1995.

36. Ramamoorthy, C.V., Siu-Bun, F.H., and Chen, W.T. On
the Automated Generation of Program Test Data, IEEE
Trans. Software Eng., 2(4):293-300, Dec. 1976.

37. Rayward-Smith, V.J., and al. Editors. Modern Heuristic
Search Methods, Wiley, 1996.

38. RTCA, Software Considerations in Airborne Systems
and Equipment Certification Guideline, Radio
Technical Commission for Aeronautics, Number DO-
178A, Mar. 1985.

39. Tracey, N., Clark, J., and Mander, K. Automated
Program Flaw Finding using Simulated Annealing. In
Proceedings ISSTA'98, pp. 73-81.

Program Analysis and Test Hypotheses

Complement

R. M. Hierons and M. Harman

April 18, 2000

Abstract

This paper considers ways in which pro-
gram analysis and test hypotheses com-
plement, focusing on one particular ex-
ample: the uniformity hypothesis. Con-
ditioned slicing can be used to either
provide con�dence in the uniformity hy-
pothesis, identify faults, or suggesting re-
�nements to the hypothesis. The exis-
tence of a uniformity hypothesis assists
in the production of small conditioned
slices which might then be analysed fur-
ther. keywords: Program veri�cation,
test hypotheses, the uniformity hypoth-
esis, program analysis, conditioned pro-
gram slicing.

1 Introduction

Most approaches to program veri�ca-
tion can be categorised as one of dy-
namic testing and program analysis. Dy-
namic testing involves exploring the be-
haviour of the implementation under test
(IUT) when given particular input val-
ues. Within the veri�cation context,
program analysis involves studying the
source code of the IUT in order to derive
information that might either increase
the con�dence in the correctness of the
IUT or detect faults in the IUT.

In general, it is not possible to produce
a �nite test set that is guaranteed to de-
termine correctness. There are, however,
techniques that generate tests that are
guaranteed to determine correctness as
long as the IUT satis�es certain condi-
tions. These conditions have been called
test hypotheses ([11]) and design for test
conditions ([19]). Section 2 discusses test

hypotheses. Testing might then be seen
as a process of choosing an appropriate
set of test hypotheses and then generat-
ing a corresponding test set.
If the hypotheses do not hold, the cor-

responding test set may be ine�ective
and ineÆcient. Thus, it is important to
use test hypotheses that hold.
Previous work has largely focussed on

introducing new hypotheses and gener-
ating tests in the presence of hypothe-
ses ([12, 8, 31, 32, 9, 27, 5, 11, 17]).
This paper instead concentrates upon
semi-automated techniques for establish-
ing that such hypotheses do hold. Specif-
ically the relationship between the uni-
formity hypothesis and program analy-
sis, through the use of conditioned slic-
ing, is described. Slicing shall be brie
y
reviewed in Section 3.
Sections 4 and 5 will discuss the fol-

lowing ways in which this relationship
may be used.

1. An instance of the uniformity hy-
pothesis, which represents expert
knowledge about the IUT, might be
used to simplify program analysis.

2. Program analysis might be used to
either provide con�dence in, refute
or re�ne proposed test hypotheses.

It will thus be demonstrated that there
exists a symbiotic relationship between
program analysis and test hypotheses.

2 Test hypotheses

Suppose I is to be tested against a spec-
i�cation M with input domain D. It
is normal to assume that I accepts the

same class of inputs asM , though an er-
ror may result for some of these input
values. Without any further knowledge
about I there is, in general, no �nite test
set that determines correctness.
Fortunately this does not represent the

normal scenario in testing. The tester
has some expert knowledge about I and
I is not, in general, merely a black box:
it is often possible to examine the code
used to produce I . There is thus fur-
ther information about I that may be
utilised in test generation. This infor-
mation might be expressed as properties
of I called test hypotheses.
Suppose that F denotes the set of pos-

sible behaviours of the IUT. F is often
called a Fault Model ([22]). Suppose, fur-
ther, that the current set of hypotheses is
H and FH denotes the set of behaviours,
from F , that are consistent with H . Let
I 0 � M denote that I 0 conforms to M

and I 0 �T M denote that the I 0 con-
forms toM on T � D. Naturally, the no-
tion of conformance used depends upon
the speci�cation language. The following
de�nes what it means for a test set T to
be guaranteed to determine correctness
under H .

De�nition 1 Test set T is complete
with respect to H if and only if 8I 0 2
FH :I

0 �M () I 0 �T M .

Two related notions, of a test being
unbiased and valid, have been described
([11]). A test is valid if it rejects all
faulty implementations that satisfy the
test hypotheses. A test is unbiased if
it cannot reject a conforming implemen-
tation that satis�es the test hypotheses.
Then a test is complete if and only if it
is unbiased and valid.
Clearly, the exhaustive test set D is

complete with respect to every hypoth-
esis H . Exhaustive testing is, how-
ever, rarely practical. Given M and
I , there are the following, inter-related,
challenges.

1. To devise some set H of test hy-
potheses, that I is likely to satisfy,
such that there is a corresponding
feasible complete test set.

2. To determine whether I satis�es H .

3. To generate a complete test set for
I with respect to H .

The development of an appropriate set
of hypotheses can proceed via re�nement
([11]). Some minimal hypothesis is pro-
duced and this is re�ned through a num-
ber of steps. The minimal hypothesis
might, for example, be that I is equiva-
lent to some unknown element from fault
model F or simply that the input and
output domains for I are the same as
those for M . Each re�nement strength-
ens the test hypotheses and thus, poten-
tially, allows a smaller complete test set.

Many test generation techniques are
based around partitioning the input
domain D into a �nite set DM =
fD1; : : : ; Dkg of subdomains such that,
according to M , all elements in a sub-
domain should be processed in the same
way ([12, 31, 32, 9, 27, 11, 17]). The uni-
formity hypothesis says that if the input
of one value in some Di 2 DM leads to a
failure then all values in Di lead to fail-
ures.

It is to be expected that there is some
(unknown) partition DI , of the input
domain, such that the behaviour of I
is uniform on each subdomain of DI .
The uniformity hypothesis is thus based
upon the assumption that DM and DI

are similar. If the uniformity hypothesis
holds it is suÆcient to choose one value
from each Di 2 DM . However, the test
for some Di 2 DM is normally comple-
mented by tests around the boundaries
of Di ([32, 9]) which are expected to �nd
any small errors in the boundaries.

It has been noted ([29]) that if the
partitions DM and DI were known, the
behaviours of I and M could be com-
pared on each subdomain from DIM =
fDi \ Dj j Di 2 DM ; Dj 2 DIg. While
we do not consider the generation of DI ,
this idea from ([29]) provided the inspi-
ration for much of the work contained in
this paper.

3 Program slicing and

symbolic evaluation

Program slicing is the process of taking
a program I and some slicing criterion
(V; n) (variable set V and node n) and
removing all parts of I that do not af-
fect the value, at node n, of any variable
in V . Much work has focussed on the
technical problems associated with slic-
ing programs in the presence of proce-
dures [20, 28], pointers [2, 24, 25] and
jumps [3, 7, 14, 1]. This paper uses only
end slicing, in which the end of the pro-
gram is the point of interest ([23]). Thus,
throughout this paper the slicing crite-
rion is simply a set of variables.

Program slicing was initially intro-
duced as a way of assisting debugging
([30, 26]). For this application it is im-
portant that the only simpli�cation tool
available to slicing algorithms is state-
ment deletion. For a number of other
applications, such as mutation testing
([18]) and program comprehension ([13,
15]), this restriction to statement dele-
tion is unhelpful. In such cases Amor-
phous Slicing, which allows the applica-
tion of any transformations that preserve
the semantics of interest, leads to im-
proved simpli�cation ([13, 16, 4]).

In slicing it is possible to place a con-
dition C on the input values. Then any
statement that cannot a�ect the values
of the variables in V at n, given that the
input satis�es C, may be removed. This
is called conditioned slicing ([6, 10]). In
the amorphous version of conditioned
slicing any transformation that preserves
the e�ect of the original program upon
the slicing criterion is valid.

Given a program I and condition C,
SC(I) shall denote the (possibly amor-
phous) conditioned end slice of I (in
which all variables are of interest) for
condition C. Similarly, given subdomain
D0 � D, SD0(I) shall denote the condi-
tioned slice in which the input is con-
strained to D0. Thus SD0(I) denotes
SC(I) where C(x) is the condition x 2
D0.

Symbolic evaluation is the process of
describing the �nal values of the vari-

ables in a program in terms of the ini-
tial values of the variables. Since pro-
grams normally have control-
ow con-
structs, the result of applying symbolic
evaluation to a program will usually lead
to a number of symbolic values, each
with a precondition.

4 Uniformity can help

program analysis

This section describes a way in which
the existence of a uniformity hypothe-
ses may assist program analysis. This is
achieved through using the information
represented by the uniformity hypothe-
sis. It thus introduces the possibility of
using standard testing approaches, that
generate a uniformity hypothesis, to as-
sist program analysis.

Suppose subdomain D0 of D has been
chosen and all of the values inD0 are pro-
cessed in the same way by I . Then the
conditioned slice of I on the subdomain
D0 should be relatively simple. Thus, if
DI were known, this would suggest an
approach to program analysis: slice on
the subdomains of DI and analyse these
slices.

While DI is not known, it is possible
to slice using the partition DM , forming
the set S(I;DM) = fSDi

(I) j Di 2 DMg
of conditioned slices. If the uniformity
hypothesis holds the slices in S(I;DM)
should be relatively small. This might
help solve one of the challenges of con-
ditioned slicing: �nding conditions that
lead to small but useful slices.

Consider the program analysis prob-
lem of producing a proof of correctness.
Then, I conforms to M if and only if
for all Di 2 DM , I conforms to M on
Di. Thus, in order to prove that I con-
forms to M it is suÆcient to prove that
each SDi

(I) conforms to M on the cor-
responding Di. It is then suÆcient to
consider, for each Di 2 DM , I and M

restricted to Di.

The uniformity hypothesis is based on
the behaviour of M being relatively sim-
ple on each Di. If the uniformity hy-
pothesis holds, the SDi

(I) should also

be relatively simple. Thus, if the uni-
formity hypothesis holds, the proof of
correctness has been broken down into
a number of relatively simple proofs.
Symbolic evaluation might be applied
to each SDi

(I), producing an expres-
sion that can more easily be handled
by an automated theorem-prover. Nat-
urally, if the partition DI de�ned by I

were known, slicing would be applied on
DIM = fDi \Dj j Di 2 DM ; Dj 2 DIg.
The approach outlined in ([29]) might
then be used.
Consider now an implementation I�

that is intended to solve the triangle
problem. It thus takes three integers x,
y and z and should return:

1. `equilateral' if x=y and y=z;

2. `isosceles' if two of x, y, and z are
the same but the third is di�erent;

3. `scalene' if x, y, and z are all di�er-
ent.

The tester might analyse this speci�-
cation and produce the following condi-
tions:

C1(x; y; z) � x = y ^ y = z

C2(x; y; z) �
((x = y) _ (x = z) _ y = z))

^:(x = y ^ y = z)

C3(x; y; z) � x 6= y ^ y 6= z ^ x 6= z

Suppose that the computation con-
tained in I� is the code shown below.

if (x==y && y==z)

r = "equilateral";

if (x==y) r = "isosceles";

if (x==z) r = "isosceles";

if (y==z) r = "isosceles";

if (x!=y && y!=z && x!=z)

r = "scalene";

printf("The triangle is %s \n",r);

Suppose that I� is sliced on conditions
C1, C2 and C3. The initial step in pro-
ducing a conditioned slice, of I�, for C3
might give:

if (x!=y && y!=z && x!=z)

r = "scalene";

This reduces to:

r = "scalene";

Similarly, the �rst step in the process
of applying conditioned slicing with C2
might give:

if (x==y) r = "isosceles";

if (x==z) r = "isosceles";

if (y==z) r = "isosceles";

This reduces to:

r = "isosceles";

Suppose conditioned slicing is applied
with C1. Then any e�ect of the �rst
three lines is killed by the fourth line.
Conditioned slicing might initially pro-
duce:

if (y==z) r = "isosceles";

Again, this may be further reduced,
giving:

r = "isosceles";

The behaviour on each subdomain is
quite simple. In fact, in each case it
is constant. The information provided
by the uniformity hypothesis has thus
allowed the generation of small condi-
tioned slices. The existence of these
conditioned slices allows the production
of simple proofs of correctness, for the
subdomains where the behaviour is cor-
rect, and the identi�cation of counter-
examples where the behaviour is not cor-
rect. In this case it is clear that the be-
haviour on C2 and C3 is correct but that
the behaviour on C1 is faulty.

It is worth noting that the production
of such simple slices has lent weight to
the uniformity hypothesis. Thus, if pro-
ducing a proof of correctness were not
feasible for some subdomain, test derived
using the hypothesis might be used in-
stead.

5 Program analysis can

help when using uni-

formity hypotheses

This section describes ways in which pro-
gram analysis assists a tester when con-
sidering using the uniformity hypothesis.
These approaches are again based upon
the conditioned end slices of I , contained
in S(I;DM), produced by slicing I on
the subdomains of the partition DM .
If a slice I 0 = SDi

(I) is unexpectedly
complex, this might indicate that I takes
on more than one behaviour on Di. This
might occur either because this subdo-
main should be split further or because
a boundary is wrong. Then we might
either further analyse this slice or test
more thoroughly in Di.
Let Symb(I;Di) denote the result of

applying symbolic evaluation to SDi
(I),

Di 2 DM . Then Symb(I;Di) is a
set of pairs, each pair (p; f) consist-
ing of a precondition p and a behaviour
f . Suppose Symb(I;Di) has been pro-
duced and it contains more than one
behaviour with separate preconditions.
These preconditions suggest a re�nement
of DM : the subdomain should be parti-
tioned into ffx 2 Di j p(x)g j 9f:(p; f) 2
Symb(I;Di)g. The conditioned slices on
each of these subdomains may now be
produced and these should be relatively
simple.
Suppose a slice SDi

(I) 2 S(I;DM) is
simple and Symb(I;Di) contains one be-
haviour only. This provides some ini-
tial con�dence in the behaviour of I be-
ing uniform on Di. It might also be
possible to further analyse the relation-
ship between the behaviour of SDi

(I) or
Symb(I;Di) and that of M on Di. This
analysis might, for example, involve a
proof of correctness. Alternatively, it
might involve determining the type of
function applied. Where the form of the
behaviours ofM and I onDi is known, it
may be possible to devise a test set that
determines correctness on Di ([21]), thus
overcoming the problem of coincidental
correctness.
Consider a system designed to return

the sale price of a purchase of rice and

lentils. Suppose x denotes the amount
of lentils being purchased and y denotes
the amount of rice being purchased. The
price of rice is 2 and the price of lentils
is 1. There are discounts for bulk pur-
chases: if the amount of lentils being
purchases is greater than or equal to 50
there is a �ve percent discount and if the
total price (without discount) is greater
than or equal to 1000 there is a ten per-
cent discount. The discounts are cumu-
lative. Suppose program Ip, contain-
ing the following code that performs the
computation, has been produced.

if (x >= 50.0) p1 = 0.95;

else p1 = 1.0;

if ((2.0*x+y) >1000.0) p2 = 0.9;

else p2 = 1.0;

c = p1*p2*(2.0*x+y);

There are two basic conditions, x � 50
and y � 1000, to consider. This leads to
the following four conditions.

x < 50 ^ (2x+ y) < 1000

x < 50 ^ (2x+ y) � 1000

x � 50 ^ (2x+ y) < 1000

x � 50 ^ (2x+ y) � 1000

Consider the second condition,
C(x; y) � x < 50 ^ (2x + y) � 1000.
Then the corresponding conditioned
slice of Ip is

if (x >= 50.0) p1 = 0.95;

else p1 = 1.0;

if ((2.0*x+y) >1000.0) p2 = 0.9;

else p2 = 1.0;

c = p1*p2*(2.0*x+y);

This can be further reduced to:

p1 = 1.0;

if ((2.0*x+y) >1000.0) p2 = 0.9;

else p2 = 1.0;

c = p1*p2*(2.0*x+y);

and then, using amorphous slicing:

if ((2.0*x+y) >1000.0) p2 = 0.9;

else p2 = 1.0;

c = p2*(2.0*x+y);

This cannot be simpli�ed any further.
Symbolic evaluation may now be ap-
plied, leading to the following precondi-
tion/function pairs:

(((2x + y) > 1000:0); c = 0:9 � (2x+ y))

(((2x+ y) � 1000:0); c = (2x+ y))

The second precondition can be sim-
pli�ed to 2x + y = 1000. This analy-
sis suggests dividing the subdomain, de-
�ned by the precondition C(x; y) � x <

50^(2x+y) � 1000, into C1(x; y) � x <

50^ (2x+ y) > 1000 and C2(x; y) � x <

50^(2a+y) = 1000. Any test case taken
from the second of these subdomains will
lead to a failure.

6 Future Work

This paper has considered ways in which
program analysis and test generation
complement one another. In particu-
lar, a relationship between the unifor-
mity hypothesis and conditioned slicing
is explored. There is, however, a gen-
eral principle contained in this work: in-
formation contained in test hypotheses
may assist when analysing a program
and program analysis may assist when
using test hypotheses. This general ap-
proach may extend to other types of test
hypotheses and forms of program analy-
sis.
The potential role of program analy-

sis, when using test hypotheses, suggests
the challenge of devising test hypotheses
that

1. are likely to hold;

2. lead to feasible tests that are easy
to generate;

3. are relatively easy to verify using
program analysis.

Other test hypotheses might represent
information that can assist in program
analysis. This suggests the investigation
of information contained in test hypothe-
ses, information that might assist partic-
ular forms of program analysis, and any
relationships between these types of in-
formation.

7 Conclusions

Many test techniques make assumptions,
often called test hypotheses, about the
implementation under test. These allow
stronger statements to be made about
the e�ectiveness of testing if the test hy-
potheses hold. However, if the hypothe-
ses do not hold then the tests generated
may have little value.
Program analysis is capable of provid-

ing general information about implemen-
tations. Often, however, program com-
plexity limits the use and e�ectiveness of
program analysis.
This paper has considered the rela-

tionship between test hypotheses and
program analysis. Within this it has
concentrated on the uniformity hypoth-
esis. Program analysis may provide con-
�dence in or refute the test hypotheses
or may suggest re�nements to the hy-
potheses. The information provided by
the existence of the uniformity hypothe-
sis can be used to simplify program anal-
ysis through the production of small con-
ditioned slices.

References

[1] H. Agrawal. On slicing programs
with jump statements. In ACM
SIGPLAN Conference on Program-
ming Language Design and Imple-
mentation, pages 302{312, Orlando,
Florida, June 20{24 1994. Proceed-
ings in SIGPLAN Notices, 29(6),
June 1994.

[2] H. Agrawal, R. A. DeMillo, and
E. H. Spa�ord. Dynamic slicing in
the presence of unconstrained point-
ers. In 4th ACM Symposium on
Testing, Analysis, and Veri�cation
(TAV4), pages 60{73, 1991. Ap-
pears as Purdue University Techni-
cal Report SERC-TR-93-P.

[3] T. Ball and S. Horwitz. Slicing
programs with arbitrary control{

ow. In Peter Fritzson, editor,
1st Conference on Automated Al-
gorithmic Debugging, pages 206{
222, Link�oping, Sweden, 1993.

Springer. Also available as Uniersity
of Wisconsin{Madison, technical re-
port (in extended form), TR-1128,
December, 1992.

[4] D. W. Binkley. Computing amor-
phous program slices using de-
pendence graphs and a data-
ow
model. In ACM Symposium on
Applied Computing, pages 519{525,
The Menger, San Antonio, Texas,
U.S.A., 1999. ACM Press, New
York, NY, USA.

[5] G. V. Bochmann, A. Das,
R. Dssouli, M. Dubuc,
A. Ghedamsi, and G. Luo. Fault
models in testing. In Protocol Test
Systems IV, pages 17{30. Elsevier
Science (North-Holland), 1992.

[6] G. Canfora, A. Cimitile, and A. De
Lucia. Conditioned program slic-
ing. In Mark Harman and Keith
Gallagher, editors, Information and
Software Technology Special Issue
on Program Slicing, volume 40,
pages 595{607. Elsevier Science B.
V., 1998.

[7] J.{D. Choi and J. Ferrante. Static
slicing in the presence of goto state-
ments. ACM Transactions on Pro-
gramming Languages and Systems,
16(4):1097{1113, July 1994.

[8] T. S. Chow. Testing software design
modelled by �nite state machines.
IEEE Transactions on Software En-
gineering, 4:178{187, 1978.

[9] L. A. Clarke, J. Hassell, and D. J.
Richardson. A close look at domain
testing. IEEE Transactions on Soft-
ware Engineering, 8:380{390, 1982.

[10] A. De Lucia, Anna R. Fasolino, and
M. Munro. Understanding function
behaviours through program slicing.
In 4th IEEE Workshop on Program
Comprehension, pages 9{18, Berlin,
Germany, March 1996. IEEE Com-
puter Society Press, Los Alamitos,
California, USA.

[11] M. C. Gaudel. Testing can be formal
too. In TAPSOFT'95, pages 82{96.
Springer-Verlag, March 1995.

[12] J. B. Goodenough and S. L. Ger-
hart. Towards a theory of test
data selection. IEEE Transactions
on Software Engineering, 1:156{
173, 1975.

[13] M. Harman and S. Danicic. Amor-
phous program slicing. In 5th IEEE
International Workshop on Pro-
gram Comprehesion (IWPC'97),
pages 70{79, Dearborn, Michigan,
USA, May 1997. IEEE Computer
Society Press, Los Alamitos, Cali-
fornia, USA.

[14] M. Harman and S. Danicic. A
new algorithm for slicing unstruc-
tured programs. Journal of Soft-
ware Maintenance, 10(6):415{441,
1998.

[15] M. Harman, C. Fox, R. M. Hi-
erons, D. Binkley, and S. Dani-
cic. Program simpli�cation as a
means of approximating undecid-
able propositions. In 7th IEEE In-
ternational Workshop on Program
Comprehesion (IWPC'99), pages
208{217, Pittsburgh, Pennsylvania,
USA, May 1999. IEEE Computer
Society Press, Los Alamitos, Cali-
fornia, USA.

[16] M. Harman, Y. Sivagurunathan,
and S. Danicic. Analysis of dynamic
memory access using amorphous
slicing. In IEEE International
Conference on Software Mainte-
nance (ICSM'98), pages 336{345,
Bethesda, Maryland, USA, Novem-
ber 1998. IEEE Computer Soci-
ety Press, Los Alamitos, California,
USA.

[17] R. M. Hierons. Testing from a Z
speci�cation. Journal of Software
Testing, Veri�cation and Reliabil-
ity, 7:19{33, 1997.

[18] R. M. Hierons, M. Harman, and
S. Danicic. Using program slicing
to assist in the detection of equiva-
lent mutants. Journal of Software
Testing, Veri�cation and Reliabil-
ity, 9r:233{262, 1999.

[19] M. Holcombe and F. Ipate. Cor-
rect Systems: Building a Business
Process Solution. Springer-Verlag,
1998.

[20] S. Horwitz, T. Reps, and D. Bink-
ley. Interprocedural slicing using
dependence graphs. ACM Trans-
actions on Programming Languages
and Systems, 12(1):26{61, 1990.

[21] W. E. Howden. Algebraic program
testing. ACTA Informatica, 10:55{
56, 1978.

[22] ITU-T. Z.500 Framework on for-
mal methods in conformance test-
ing. International Telecommunica-
tions Union, 1997.

[23] A. Lakhotia. Rule{based approach
to computing module cohesion. In
Proceedings of the 15th Conference
on Software Engineering (ICSE-
15), pages 34{44, 1993.

[24] P. E. Livadas and A. Rosenstein.
Slicing in the presence of pointer
variables. Technical Report SERC-
TR-74-F, Computer Science and
Information Services Department,
University of Florida, Gainesville,
FL, June 1994.

[25] J. R. Lyle and D. Binkley. Program
slicing in the presence of pointers. In
Foundations of Software Engineer-
ing, pages 255{260, Orlando, FL,
USA, November 1993.

[26] J. R. Lyle and M. Weiser. Au-
tomatic program bug location by
program slicing. In 2nd Inter-
national Conference on Computers
and Applications, pages 877{882,
Peking, 1987. IEEE Computer Soci-
ety Press, Los Alamitos, California,
USA.

[27] T. J. Ostrand and M. J. Balcer. The
category-partition method for spec-
ifying and generating tests. Com-
munications of the ACM, 31:676{
686, 1988.

[28] T. W. Reps. Solving demand
versions of interprocedural analysis

problems. In Peter Fritzon, editor,
Compiler Construction, 5th Inter-
national Conference, volume 786 of
Lecture Notes in Computer Science,
pages 389{403, Edinburgh, U.K., 7{
9 April 1994. Springer.

[29] D. J. Richardson and L. A. Clarke.
Partition analysis: A method
combining testing and veri�cation.
IEEE Transactions on Software En-
gineering, 14:1477{1490, 1985.

[30] M. Weiser. Program slicing. IEEE
Transactions on Software Engineer-
ing, 10(4):352{357, 1984.

[31] E. J. Weyuker and T. J. Ostrand.
Theories of program testing and
the application of revealing subdo-
mains. IEEE Transactions on Soft-
ware Engineering, 6:236{246, 1980.

[32] L. J. White and E. I. Cohen. A
domain strategy for computer pro-
gram testing. IEEE Transactions
on Software Engineering, 6:247{
257, 1980.

Annotation-Assisted Lightweight Static Checking

David Evans
evans@cs.virginia.edu

University of Virginia, Department of Computer Science

Abstract
While heavyweight formal methods have
shown much promise in academia and
remarkable success in industrial hardware
projects, they are rarely used in industrial
software projects. There are many reasons for
this [DillRusby96, Hall96, HollowayButler96],
but we believe one of the most important is the
lack of a realistic adoption path between
current development techniques and more
formal approaches. Our research seeks to
provide a few of the steps along that path. Our
experience so far with LCLint [EGHT94,
Evans96] indicates that lightweight static
checking tools may provide an effective way to
introduce formal methods into industrial
environments.

Background

There is a huge gap between the amount of
effort and expertise required to use
traditional development tools (such as
compilers, integrated development
environments, and test scripts) and formal
techniques such asZ specifications, model
checking, and program verification. On
the other hand, a large class of common
programming errors can be detected using
simpler techniques. Our research explores
what can be done with minimal
programmer effort, without requiring
substantial changes to traditional
development processes, using a tool that
requires no user interaction and runs about
as fast as a typical compiler.

We have developed LCLint, a tool for
statically checking C programs. LCLint
provides a first step towards adoption of
formal techniques and mechanical
analysis. If minimal effort is invested
adding annotations to programs, LCLint
can perform stronger checks than can be
done by any compiler or standard lint.
Adding these annotations is the first step
on the path to using formal analysis
techniques. LCLint checking ensures that
there is a clear and commensurate payoff
for any effort spent adding annotations.

Some of the problems that can be detected
by LCLint include: violations of
information hiding; inconsistent
modifications of caller-visible state;
inconsistent uses of global variables;
memory management errors including
uses of dead storage and memory leaks;
and undefined program behavior. LCLint
checking is done using simple dataflow
analyses. This means the checking is as
fast as a compiler, and LCLint can easily
be introduced into standard development
cycles.

As one would expect, LCLint’s
performance and usability goals require
certain compromises to be made regarding
the checking. In particular, we believe
that it is reasonable to sacrifice soundness
and completeness towards these goals (see
[Evans96] for a more complete argument).
While this would not be acceptable in
many environments, it is a desirable
tradeoff in a typical industrial
development environment where efficient
detection of program bugs is the
overriding goal. LCLint has been in active
use for more than five years, and has been
used by thousands of programmers in both
industry and academia.

Current Directions

Our current work focuses on extending
this approach in two directions: enhancing
the functionality of LCLint by adding
support for user-defined annotations
without relaxing the usability and
efficiency requirements, and providing the
next step toward heavyweight formal
methods by introducing more expressive
annotations and automated run-time
checking.

User-defined Annotations. Currently,
LCLint users are limited to a pre-defined
set of annotations. This works well as
long as their programming style is
consistent with the methodology supported

by LCLint (e.g., abstract data types
implemented by separate modules,
pointers used in a stylized way), but is
problematic if one is checking a program
that does not adhere to this methodology.
For example, LCLint provides annotations
for checking storage that is managed using
reference counting. An annotation is used
to denote an integer field of a structure as
the reference count, and LCLint will report
inconsistencies if new pointers to the
structure are created without increasing the
reference count, or if the storage
associated with the referenced object is not
deallocated when the reference count
reaches zero. If a program implements
reference counting in some other way (for
example, by keeping the reference counts
in a separate lookup table), however,
LCLint provides no relevant annotations
or checking. More generally, applications
often have application-specific constraints
that should be checked statically.
Programmers should be able to define
annotations that express these decisions,
and use LCLint to verify that the code is
consistent with their constraints.

We are investigating extensions to LCLint
that address this need by supporting user-
defined annotations. Programmers will be
able to invent new annotations, express
syntactic constrains on their usage, and
define checking associated with the
annotation.

Annotations introduce state that is
associated with both declarations and
intermediate expressions along symbolic
execution paths. The meaning of an
annotation is defined by semantic rules
similar to typing judgments, except they
may describe more flexible constraints and
transitions than is usually done with typing
judgments. We are defining a general
meta-annotation language that can define a
class of annotations in a simple and
general way. Meta-annotations define
constraints and transition functions when
storage is assigned, passed as parameters,
returned from a function, and when control
enters or exits a block or function.

We are currently experimenting with
annotations for detecting buffer overflow
errors. Annotations and checking needed

to statically detect buffer overflows are
more complex than previous LCLint
annotations. They may depend on
numeric constraints as well as establishing
relationships between more than one
reference. For example, one annotation
expresses that the allocated size of storage
referenced by a structure field is equal to
the value of an integral field in the same
structure. These annotations will provide
a good basis for determining the required
scope of the meta-annotation language, as
well as for experimenting with the
expressive requirements of the meta-
annotation language.

Towards Heavyweight Formal
Techniques. The performance and
usability requirements of LCLint
inherently limit the kinds of checking that
can be done as well as the claims that can
be made about a checked program. We
can consider overcoming these limitations
by relaxing these requirements. Typical
users will start by using the lightweight
version of LCLint, but as they become
more familiar with formal techniques will
be willing to invest the effort required to
use heavier-weight techniques. Providing
a straightforward and effective transition
path from lightweight to heavyweight
formal techniques is a major goal of this
work.

One approach would be to require more
complete specifications and use theorem-
proving technology to perform more
complex checking. This is similar to what
is done by the Extended Static Checking
(ESC) project at Compaq SRC
[Detlefs98]. ESC uses a theorem proving
technology, which enables it to detect a
larger class of errors than can be done by
the simple dataflow analyses done by
LCLint, but means that the analysis is
several orders slower and the size of
programs that can be analyzed is severely
limited. As programmers develop more
complex specifications, they would be
spending more time writing specifications,
and checking would slow down. There
would need to be several gradual transition
steps between lightweight annotations
with dataflow analyses, and full formal
specifications with interactive theorem
proving.

Another approach would be to use a
combination of static and run-time
checking. If LCLint is not able to prove
statically that a specified property holds, it
could insert run-time checks to ensure the
property holds at run-time. This has the
considerable disadvantage that an error
may still occur at run-time, but would
allow more complex properties to be
guaranteed without requiring the user
expertise and effort typically required of a
program verification system.

Our experience using Naccio to transform
programs to enforce a safety policy
described using a general, high-level
language [EvansTwyman99, Evans99]
offers a possible approach to automatically
inserting run-time checking in programs.
Related approaches include the Assertion
Definition Language (ADL) created by
Sun Microsystems, X/Open and the
Information-technology Promotion
Agency (an agency of Japan’s MITI)
[Sankar93, Obayashi98] and Anna’s
Annotation Transformer [Luckham90].
Both tools generate run-time assertions
from specifications. We believe a
combination of run-time and static
checking that builds on a lightweight base
is a promising way to introduce
heavyweight formal methods into
industrial environments.

Availability
More information on LCLint and source code
and binary releases is available at
http://lclint.cs.virginia.edu.

Acknowledgements
LCLint grew out of work at DEC Systems
Research Center and the MIT Lab for
Computer Science led by John Guttag and Jim
Horning. The work described in this paper is
being done by David Evans, John Knight and
David Larochelle at the University of Virginia.

References
[Detlefs98] David L. Detlefs, K. Rustan M.

Leino, Greg Nelson, James B. Saxe.
Extended Static Checking. Compaq SRC
Research Report #159, December, 1998.

[DillRushby96] D. Dill and J. Rushby.
Acceptance of Formal Methods: Lessons

from Hardware Design.IEEE Computer,
April 1996.

[EGHT94] David Evans, John Guttag, Jim
Horning and Yang Meng Tan.LCLint: A
Tool for Using Specifications to Check
Code. In Proceedings of the SIGSOFT
Symposium on the Foundations of
Software Engineering, December 1994.

[Evans96] David Evans.Static Detection of
Dynamic Memory Errors. In Proceedings
of the SIGPLAN Conference on
Programming Language Design and
Implementation(PLDI ’96), Philadelphia,
PA, May 1996.

[EvansTwyman99] David Evans and Andrew
Twyman.Policy-Directed Code Safety.
In Proceedings of the 1999 IEEE
Symposium on Security and Privacy,
Oakland, California, May, 1999.

[Evans99] David Evans.Policy-Directed Code
Safety. MIT PhD Thesis, October 1999.

[Hall96] Anthony Hall.What is the Formal
Methods Debate About?IEEE Computer,
29(4):22-23, April 1996.

[HollowayButler96] C. Michael Holloway and
Ricky W. Butler.Impediments to
Industrial Use of Formal Methods. IEEE
Computer, 29(4):25-26, April 1996.

[Luckham90] David Luckham.Programming
with Specifications: An Introduction to
ANNA, A Language for Specifying Ada
Programs. Springer-Verlag, 1990.

[Lutz94] Robyn Lutz and Yoko Ampo.
Experience Report: Using Formal
Methods For Requirements Analysis Of
Critical Spacecraft Software. In
Proceedings of the 19th Annual Software
Engineering Workshop.Greenbelt, MD,
December 1994. NASA Goddard Space
Flight Center.

[Nobe96] C. R. Nobe and W. E. Warner.
Lessons Learned from a Trial Application
of Requirements Modeling using
Statecharts. In Proceedings of the Second
International Conference on
Requirements Engineering, pp. 86–93,
April 15–18, 1996.

[Obayashi98] Masaharu Obayashi, Hiroshi
Kubota, Shane P. McCarron, Lionel
Mallet. The Assertion Based Testing Tool
for OOP: ADL2. International
Conference on Software Engineering,
Kyoto, April 1998.

[Sankar93] Sriram Sankar and Roger Hayes.
Specifying and Testing Software
Components using ADL. Sun
Microsystems, 1993.

Analyzing Dependencies in Java Bytecode

Jianjun Zhao

Department of Computer Science and Engineering

Fukuoka Institute of Technology

3-10-1 Wajiro-Higashi, Higashi-ku, Fukuoka 811-02, Japan

Email:zhao@cs.�t.ac.jp

Abstract

Understanding program dependencies in a computer
program is essential for many software engineering tasks
such as testing, debugging, reverse engineering, and
maintenance. In this paper, we present a approach to
dependence analysis of Java bytecode, and discuss some
applications of our technique in Java bytecode slicing,
understanding, and testing.

Keywords

Dependence analysis, Java virtual machine, program
slicing, software testing.

1 Introduction

Java is a new object-oriented programming language
and has achieved widespread acceptance because it em-
phasizes portability. In Java, programs are being com-
piled into a portable binary format call bytecode. Ev-
ery class is represented by a single class �le containing
class related data and bytecode instructions�. These
�les are loaded dynamically into an interpreter, i.e., the
Java Virtual Machine (JVM) [14] and executed. Re-
cently, more and more Java applications are routinely
transmitted over the internet as compressed class �le
archives (i.e., zip �les and jar �les). A typical example
of this situation consists of downloading a web page that
contains one or more applets. However, this situation
leads to some problems. First, instead of class �les, the
source code of an application usually unavailable for the
user. So when you download a program and run it, if
there is some defect with it, you need to report the bug
to the software developers and possibly pay for a new
version of the bug-free software. However, if the de-
velopers are not available to support this software (i.e.,
they do not want to support the software anymore, or
they are out of business), the user is the only one that
can make change(s). Second, a bytecode program can

�Throughout this paper, we use the term bytecode program to

refer to the program generated by the compilation process; i.e., a

machine-independent program written in JVM bytecode instruc-

tions, and use the term bytecode method to refer to the method

that is written in JVM bytecode instructions and contained in a

bytecode program. We also use the term Java bytecode to refer

to bytecode programs as a whole.

have bugs since the methods used for Java software test-
ing do not necessarily remove all possible bugs from its
source program. At these cases, if we have some tools
that can be used to support bytecode understanding,
testing, and debugging, they can be greatly helpful for
a programmer, a maintainer, and a manager.

One way to support to develop such kind of tools is pro-
gram dependence analysis technique. Program depen-
dencies are dependence relationships holding between
program elements in a program that are implicitly de-
termined by the control
ows and data
ows in the pro-
gram. Intuitively, if the computation of a statement
directly or indirectly a�ects the computation of another
statement in a program, there might exist some pro-
gram dependence between the statements. Dependence
analysis is the process to determine the program's de-
pendencies by analyzing control
ows and data
ows in
the program.

Many compiler optimizations and program analysis and
testing techniques rely on program dependence infor-
mation, which is topically represented by a dependence-
based representation, for example, a program depen-
dence graph (PDG) [7, 12]. The PDG, although orig-
inally proposed for compiler optimizations, has been
used for performing program slicing and for various
software engineering tasks such as program debugging,
testing, maintenance, and complexity measurements
[2, 3, 5, 10, 16, 17]. For example, program slicing, a de-
composition technique that extracts program elements
related to a particular computation, is greatly bene�t
from a PDG on which the slicing problem can be re-
duced to a vertex reachability problem [16] that is much
simpler than its original algorithm [18].

Dependence analysis was originally focused on proce-
dural programs. Recently, as object-oriented software
become popular, researchers have applied dependence
analysis to object-oriented programs to represent vari-
ous object-oriented features such as classes and objects,
class inheritance, polymorphism and dynamic binding
[4, 11, 13, 15], and concurrency [19, 20]. (for detailed
discussions, see related work section).

However, previous work on dependence analysis has

mainly focused on programs written in high-level pro-
gramming languages, rather than programs in low-level
programming languages such as Java bytecode. Al-
though there are several dependence analysis techniques
for binary executables on di�erent operating systems
and machine architectures [6, 8, 9], the existing depen-
dence analysis techniques can not be applied to Java
bytecode straightforwardly due to the speci�c features
of JVM. In order to perform dependence analysis on
Java bytecode, we must extend existing dependence
analysis techniques for adapting Java bytecode.

In this paper we propose a dependence analysis tech-
nique for Java bytecode. To this end, we �rst identify
and de�ne various types of primary dependencies in a
bytecode program at the intraprocedural level, then we
discuss some applications of our technique such as Java
bytecode slicing, understanding, and testing. In addi-
tion to these applications, we believe that the depen-
dence analysis technique presented in this paper can also
be used as an underlying base to develop other software
engineering tools for Java bytecode to aid debugging,
reengineering, and reverse engineering.

The rest of the paper is organized as follows. Section
2 brie
y introduces the Java virtual machine. Section
3 considers the dependence analysis of Java bytecode.
Section 4 discusses some applications of the dependence
analysis technique. Concluding remarks are given in
Section 5.

2 The Java Virtual Machine

The Java Virtual Machine (JVM) is a stack-based vir-
tual machine that has been designed to support the Java
programming language [1]. The input of the JVM con-
sists of platform-independent class �les. Each class �le
is binary �le that contains information about the �elds
and methods of one particular class, a constant pool (a
kind of symbol-table), as well as the actual bytecode for
each method.

Each JVM instruction consists of a one-byte opcode
that de�nes a particular operation, followed by zero or
more type operands that de�ne the data for the op-
eration. For example, instruction 'sipush 500' (push
constant 500 on the stack) is represented by the bytes
17,1,and 244.

For most JVM opcodes, the number of correspond-
ing operands is �xed, whereas for the other opcodes
(lookupswitch, tableswitch, and wide) this number
can be easily determined from the bytecode context.
Consequently, once the o�set into a class �le and the
length for the bytecode of a certain method have been
determined, it is straightforward to parse the bytecode
instructions of this method.

At runtime, the JVM fetches an opcode and correspond-

ing operands, executes the corresponding action, and
then continues with the next instruction. At the JVM-
level, operations are performed on the abstract notion
of words [14] : words have a platform-speci�c size, but
two words can contain values of type long and double,
whereas one word can contain values of all other types.
During execution of bytecode, three exceptional situa-
tions may arise:

� The JVM throws an instance of a subclass of
VirtualMachineError in case an internal error or
resource limitation prevents further execution.

� An exception is thrown explicitly by the instruction
athrow.

� An exception is thrown implicitly by a JVM in-
struction.

Example. Figure 1 shows a simple Java class Test and
its corresponding bytecode instructions.

3 Dependence Analysis

To perform dependence analysis on bytecode methods,
it is necessary to identify all primary dependencies in a
bytecode method. In this section, we present two types
of primary intraprocedural dependencies in a bytecode
method. Intraprocedural dependencies are related to
dependencies in a single bytecode method.

3.1 Background

We give some de�nitions that are necessary for for-
mally de�ning intraprocedural dependencies in a byte-
code method from a graphical viewpoint.

De�nition 3.1 A digraph is an ordered pair (V;A),
where V is a �nite set of elements called vertices, and
A is a �nite set of elements of the Cartesian product
V � V , called arcs, i.e., A � V � V is a binary relation
on V . For any arc (v1; v2) 2 A, v1 is called the initial
vertex of the arc and said to be adjacent to v2, and v2 is
called terminal vertex of the arc and said to be adjacent
from v1. A predecessor of a vertex v is a vertex adja-
cent to v, and a successor of v is a vertex adjacent from
v. The in-degree of vertex v, denoted by in-degree(v),
is the number of predecessors of v, and the out-degree
of a vertex v, denoted by out-degree(v), is the number
of successors of v. A simple digraph is a digraph(V; A)
such that no (v; v) 2 A for any v 2 V .

De�nition 3.2 A path in a digraph (V;A) is a se-
quence of arcs (a1; a2; : : : ; ak) such that the terminal
vertex of ai is the initial vertex of ai+1 for 1 � i � k�1,
where ai 2 A(1 � i � k), and k(k � 1) is called the
length of the path. If the initial vertex of a1 is vI and

0: iconst_0

1: istore_1

2: iconst_0

3: istore_2

4: goto [label_20]

7: iload_1

8: iconst_1

9: iadd

10: istore_1

11: iload_2

12: aload_0

13: getfield [Test.array]

16: iload_1

17: iaload

18: iadd

19: istore_2

20: iload_1

21: bipush 100

23: if_icmplt [label_7]

26: goto [label_37]

class Test

 int array[];

 int Test() {

 int i = 0, j = 0;

 try {

 while (i < 100) {

 i = i + 1;

 j = j + array[i];

 }

 }

 catch(Exception e) { return 0; }

 finally { a = null; }

 return j;

 }

}

29: pop

30: iconst_0

31: istore_3

32: jsr [label_51]

35: iload_3

36: ireturn

37: jsr [label_51]

40: goto [label_60]

43: astore temp_4

45: jsr [label_51]

48: aload temp_4

50: athrow

51: astore temp_5

53: aload_0

54: aconst_null

55: putfield [Test.arr

58: ret temp_5

60: iload_2

61: ireturn

javac

Figure 1: A simple bytecode method.

the terminal vertex of al is vT , then the path is called a
path from vI to vT .

De�nition 3.3 A control
ow graph (CFG) of a byte-
code method M is a 4-tuple Gcfg = (V;A; s; T), where
(V;A) is a simple digraph such that V is a set of vertices
representing bytecode instructions in M , and A � V �V

is a set of arcs which represent possible
ow of con-
trol between vertices in M . s 2 V is a unique vertex,
called start vertex which represents the entry point of
M, such that in-degree(s) = 0, and T � V is a set of
vertices, called termination vertices which represent the
exit points of M , such that for any t 2 T out-degree(t)
= 0 and t 6= s, and for any v 2 V (v 6= s and v does
not belong to T), 9t 2 T such that there exists at least
one path from s to v and at least one path from v to t.

Traditional control
ow analysis represents each state-
ment of a program as a vertex in its CFG. When analyz-
ing Java bytecode, we represent a bytecode instruction
as a vertex in the CFG. In our CFG, each vertex rep-
resents a bytecode instruction, and each arc represents
the possible control of
ow between bytecode instruc-
tions. Moreover, our CFG contains one unique vertex
s to represent the entry point of the method, and a set
of termination vertices T to represent the multiple exit
points of the method. The reason for using a set of
termination vertices is as follows:

In JVM, a method invocation may complete in two
ways, i.e., normal completion if that invocation does not
cause an exception to be thrown, either directly from
JVM or as a result of executing an explicit thrown state-
ment, and abnormal completion if execution of a JVM

instruction within the method cause the JVM to throw
an exception, and that exception is not handled within
the method. Evaluation of an explicit throw statement
also causes an exception to be thrown and, if the ex-
ception is not caught by the current method, results in
abnormal method completion. Therefore, to represent
these two kinds of completions of a method, our CFG
uses a set of termination vertices T to represent the
multiple exit points of the method, that is, one for the
normal method completion, and the others for abnormal
method completions.

Example. Figure 2 shows the CFG of the bytecode in-
structions in Figure 1.

De�nition 3.4 Let u and v be two vertices in the CFG
of a bytecode method. u forward dominates v i� every
path from v to t 2 T contains u. u properly forward
dominates v i� u forward dominates v and u 6= v. u

strongly forward dominates v i� u forward dominates
v and there exists an integer k (k � 1) such that ev-
ery path from v to t 2 T whose length is greater than
or equal to k contains u. u is called the immediate for-
ward dominator of v i� u is the �rst vertex that properly
forward dominates v in every path from v to t 2 T .

De�nition 3.5 A de�nition-use graph (DUG) of a
bytecode method M is a 4-tuple Gdug = (Gcfg;�;D; U),
where Gcfg = (V; A; s; T) is a CFG of M , � is a �-
nite set of symbols, called local variables in M , D :
V ! P (�) and U : V ! P (�) are two partial functions
from V to the power set of �.

Building CFG...

Basic block list for: Test

Basic block for v0

Predecessors:

Successors:

 0: iconst_0

 1: istore_1

 2: iconst_0

 3: istore_2

 4: goto [label_20]

Basic block for v1

Predecessors:

Successors:

 7: iload_1

 8: iconst_1

 9: iadd

 10: istore_1

 11: iload_2

 12: aload_0

 13: getfield [Test.array]

Basic block for v2

Predecessors:

Successors:

 16: iload_1

 17: iaload

Basic block for v3

Predecessors:

Successors:

 18: iadd

 19: istore_2

 20: iload_1

 21: bipush 100

 23: if_icmplt [label_7]

Basic block for v4

Predecessors:

Successors:

 26: goto [label_37]

Basic block for v5

Predecessors:

Successors:

 29: pop

 30: iconst_0

 31: istore_3

 32: jsr [label_51]

Basic block for v6

Predecessors:

Successors:

 35: iload_3

 36: ireturn

Basic block for v7

Predecessors:

Successors:

 37: jsr [label_51]

Basic block for v8

Precedessors:

Successors:

 40: goto [label_60]

Basic block for v9

Predecessors:

Successors:

 43: astore temp_4

 45: jsr [label_51]

Basic block for v10

Predecessors:

Successors:

 48: aload temp_4

 50: athrow

Basic block for v11

Predecessors:

Successors:

 51: astore temp_5

 53: aload_0

 54: aconst_null

 55: putfield [Test.array]

Basic block for v12

Predecessors:

Successors:

 58: ret temp_5

Basic block for v13

Predecessors:

Successors:

 60: iload_2

 61: ireturn

v0

v1

v2

v3

v4

v11

v12

v8 v6 v10

v13

v5 v9

s

v7

Figure 2: The CFG of the bytecode instructions in Figure 1.

The functions D and U map a vertex in Gcfg to the set
of local variables de�ned and used, respectively, in the
instruction represented by the vertex. A local variable x
is de�ned in an instruction i if an execution of s assigns a
value to x, while a variable x is used in an instruction if
an execution of s requires the value of x to be evaluated.

Based on the CFG and/or DUG of a bytecode method,
we can de�ne intraprocedural dependencies, i.e., control
dependence and data dependence in the method.

3.2 Control Dependencies

3.2.1 De�nition of Control Dependency

De�nition 3.6 Let Gcfg = (V;A; s; T) be the CFG of a
bytecode method, and u, v 2 V be two vertices of Gcfg.
u is directly strongly control-dependent on v i� there
exists a path P = (v1 = v; v2); (v2; v3); : : : ; (vn�1; vn =
u) from v to u such that P does not contain the im-
mediate forward dominator of v and there exists no
vertex v0 in P such that the path from v0 to u does

not contain the immediate forward dominator of v0.
u is directly weakly control-dependent on v i� v has
two successor v0 and v00 such that there exists a path
P = (v1 = v; v2); (v2; v3); : : : ; (vn�1; vn = u) from v

to u and any vertex vi (1`i � n) in P strongly forward
dominates v0 but does not strongly forward dominate v00.

Control dependencies represent control conditions on
which the execution of an instruction depends in a byte-
code method. Informally, an instruction u is directly
control-dependent on a control transfer instruction if
whether u is executed or not is directly determined by
the evaluation result of v.

3.2.2 Determining Control Dependencies

Control dependencies represent bytecode instructions
related to control conditions on which the execution of
an instruction depends. There are three types of JVM
instructions that may cause control dependencies.

First, JVM has control transfer instructions that can

cause conditionally or unconditionally the JVM to con-
tinue execution with an instruction other than the one
following the control transfer instructions. Therefore,
these kind of instructions can cause control dependen-
cies.

� Unconditional branch instructions: goto, goto_w,
jsr, jsr_w, and ret.

� Conditional branch instructions: ifeq, iflt, ifle,
ifne, ifgt, ifge, ifnull, ifnonnull, if_icmpeq,
if_icmpne, if_icmplt, if_icmpgt, if_icmple,
if_icmpge, if_acmpeq, if_acmpne, lcmp, fcmpl,
fcmpg, dcmpl, dcmpg.

� Compound conditional branch instructions:
tableswitch and lookupswitch.

Second, in JVM, when the execution of a method is �n-
ished, the method must return the control to its caller.
The caller is often expecting a value from the called
method. JVM provides six return instructions for this
purpose, which include ireturn, lreturn, freturn,
dreturn, areturn, and return. Since these return in-
structions can also change the
ow of control for the
instruction execution, they form another source of con-
trol dependencies.

Third, another kind of special branch is the jsr, for
jump subroutine. It is like a goto that remembers where
it came from. When jsr is executed, it branches to the
location speci�ed by the label, and it leaves a special
kind of value on the stack called a returnAddress to
represent the return address. This may cause some con-
trol dependence.

Fourth, exceptions are sort of super-goto which can
transfer control not only within a method, but even
terminate the current method to �nd its destination
further up the Java stack. Instructions that may ex-
plicitly or implicitly throw an exception can also cause
control dependencies because it can explicitly or implic-
itly change the control
ow from one instruction to an-
other. These kind of instructions form another source
of control dependencies.

3.3 Data Dependencies

3.3.1 De�nition of Data Dependency

De�nition 3.7 Let Gcfg = (V;A; s; T) be the CFG of a
bytecode method, and u, v 2 V be two vertices of Gcfg.
u is directly data-dependent on v i� there exists a path
P = (v1 = v; v2); (v2; v3); : : : ; (vn�1; vn = u) from v to
u such that (D(v) \ U(v) � D(P 0) 6= where D(P 0) =
D(v2) [: : : [D(vn�1).

Data dependencies represent the data
ow between in-
structions in a bytecode method. Informally an instruc-
tion u is directly data-dependent on another instruction

v if the value of a variable computed at v has a direct
in
uence on the value of a variable computed at u.

3.3.2 Determining Data Dependencies

We can compute data dependencies by determining the
de�nition and use information, i.e., the set D and U of
each instruction �rst, and compute data dependencies
based on such kind of information.

In order to de�ne the data dependencies in a bytecode
method, we use an annotated CFG, namely, the DUN,
whose vertices are as the same as its CFG, and anno-
tated in two functions according to the de�nition 2.5.
First, there is a function D(v) for the set of all local
variables de�ned at vertex v. Second, there is a func-
tion U(v) for the set of all local variables used at vertex
v. To construct the DUG of a bytecode method, we
should de�ne these two functions explicitly. Intuitively,
a use of a local variable corresponds to reading the value
of that variable, whereas a de�nition of a local variable
corresponds to writing a value into it.

According to JVM, once a method is invoked, a �xed-
size frame is allocated, which consists of a �xed-sized
operand stack and a set of local variables. E�ectively
this latter set consists of an array of words in which
local variables are addressed as word o�sets from the
array base.

First, we can determine the de�nition information, i.e.,
the set D, of each instruction in a bytecode method as
follow:

� A bytecode instruction that assigns a value to a lo-
cal variable in this frame forms a de�nition of that
variable. Therefore, the instructions istore_<n>,
istore, iinc, fstore_<n>, fstore, astore_<n>,
and astore form de�nitions of the local vari-
able that is de�ned either implicitly in the op-
code or explicitly in the next operand byte (or
two bytes if combined with a wide instruction).
Similarly, because the instructions dstore_<n>,
dstore, lstore_<n>, and lstore e�ectively oper-
ate on two local variables (viz. a data item of type
long or double at n e�ectively occupies local vari-
ables n and n+1), we let each such instruction form
two de�nitions of local variables.

For example, instruction iinc 5 1 forms a de�ni-
tion of local variable 5, while dstore_0 forms de�-
nition of both local variables 0 and 1.

� The parameter passing mechanism of bytecode
causes another source of de�nitions of local vari-
ables: if w words of parameters are passed to
a particular method, then invoking that method
forms initial de�nitions of the �rst w local variables.
The types of these parameters can be easily deter-
mined from the bytecode context. For an instance

method, the �rst parameter is a reference this to
an instance of the class in which the method is de-
�ned. Types of all other arguments are de�ned by
the corresponding method descriptor.

Second, we can determine the use information, i.e., the
set U , of each instruction in a bytecode method as fol-
low:

� A bytecode instruction that reads the value of a
local variable forms a use of that variable. There-
fore, the instructions iload_<n>, iload, iinc,
fload_<n>, fload, aload_<n>, and aload forms
uses of a single local variable de�ned either implic-
itly in the opcode or explicitly in the next operand
byte (or two bytes if combined with a wide instruc-
tion). Similarly, instructions dload_<n>, dload,
lload_<n>, and lload e�ectively form uses of two
local variables. At implementation level, each use
in a particular method may be represented by two
words: the address of the using instruction and the
o�set of the used local variable.

Once the sets D and U for each instruction of a byte-
code method have been determined, the DUG of the
method can be constructed. Based on the DUG, it is
straightforward to compute data dependencies between
instructions in a method.

4 Applications

The dependence analysis technique presented in this pa-
per are useful for many software engineering tasks re-
lated to Java bytecode development. Here we brie
y
describe three tasks: bytecode slicing, understanding,
and testing.

4.1 Bytecode Slicing

One of our purpose for analyzing dependencies in a byte-
code program is to compute static slices of the program.
In this section, we informally de�ne some notions about
statically slicing of a bytecode program, and show how
to compute static slices of a bytecode program based on
dependence analysis.

A static backward slicing criterion for a bytecode pro-
gram is a tuple (s; v), where s is an instruction in the
program and v is a local variable used at s. A static
backward slice SS(s; v) of a bytecode program on a given
static slicing criterion (s; v) consists of all instructions
in the program that possibly a�ect the value of the local
variable v at s.

Similarly, we can informally de�ne some notions of for-
ward static slicing of a bytecode program.

A static forward slicing criterion for a bytecode program
is a tuple (s; v), where s is an instruction in the program

and v is a local variable de�ned at s. A static forward
slice SS(s; v) of a bytecode program on a given static
slicing criterion (s; v) consists of all instructions in the
program that possibly be a�ected by the value of the
variable v at s.

In addition to slicing a complete bytecode program, we
can also perform slicing on a single bytecode method
independently based on dependence analysis of the
method. This may be helpful for locally analyzing a
single method.

4.2 Bytecode Understanding

Sometimes it is necessary to understanding a bytecode
program. For example, in the case that we can only
get the class �les of a Java application, but can not get
the source code of the application. When we attempt
to understand the behavior of a bytecode program, we
often want to know which local variables in which byte-
code instructions might a�ect a local variable of interest,
and which local variables in which bytecode instructions
might be a�ected by the execution of a variable of inter-
est in the program. As discussed above, the backward
and forward slicing of a bytecode program can satisfy
the requirements. On the other hand, one of the prob-
lems in software maintenance is that of the ripple e�ect,
i.e., whether a code change in a program will a�ect the
behavior of other codes of the program. When we have
to modify a bytecode program, it is necessary to know
which local variables in which instructions will be af-
fected by a modi�ed variable, and which local variables
in which instructions will a�ect a modi�ed variable. The
needs can be satis�ed by backward and forward slicing
the bytecode program being modi�ed.

4.3 Bytecode Testing

A bytecode program can have bugs since the methods
used for Java software testing do not necessarily remove
all possible bugs from its source program. So it is neces-
sary to propose some testing methods for Java software
at the bytecode level. Since our dependence analysis
technique analyzes both control and data dependencies
which represent either control or data
ow properties
in a bytecode program, it is a reasonable step to de�ne
some dependence-coverage criteria, i.e., test data selec-
tion rules based on covering dependencies, for testing
Java software at the bytecode level.

5 Concluding Remarks

In this paper we presented a dependence analysis tech-
nique to Java bytecode and discussed some applications
of our technique in software engineering tasks related
to Java bytecode development which include bytecode
slicing, understanding, and testing. In addition to these
applications, we believe that the dependence technique
presented in this paper can also be used as an underly-

ing base to develop other software engineering tools to
aid debugging, reengineering, and reverse engineering
for Java bytecode. In order to make our technique more
useful, we are now extending our analysis technique to
handle interprocedural dependence analysis as well as
exceptions and concurrency in Java bytecode.

Now we are developing a dependence analysis tool to
automatically analyze various types of primary depen-
dencies in a bytecode program and construct the depen-
dence graph for the program. We also intend to use the
graph as an underlying representation to develop slicer
and testing tool for Java bytecode.

REFERENCES

[1] K. Arnold and J. Gosling, \The Java Programming
Language," Addison-Wesley, 1996.

[2] H. Agrawal, R. Demillo, and E. Spa�ord, \De-
bugging with Dynamic Slicing and Backtracking,"
Software-Practice and Experience, Vol.23, No.6,
pp.589-616, 1993.

[3] S. Bates, S. Horwitz, \Incremental Program Test-
ing Using Program Dependence Graphs," Confer-
ence Record of the 20th Annual ACM SIGPLAN-
SIGACT Symposium of Principles of Programming
Languages, pp.384-396, Charleston, South Califor-
nia, ACM Press, 1993.

[4] J. L. Chen, F. J. Wang, and Y. L. Chen, \Slic-
ing Object-Oriented Programs," Proceedings of the
APSEC'97, pp.395-404, Hongkong, China, Decem-
ber 1997.

[5] J. Cheng, \Process Dependence Net of Distributed
Programs and Its Applications in Development of
Distributed Systems," Proceedings of the IEEE-CS
17th Annual COMPSAC, pp.231-240, U.S.A., 1993.

[6] C. Cifuentes and A. Fraboulet, \Intraprocedural
Static Slicing of Binary Executables," Proc. In-
ternational Conference on Software Maintenance,
pp.188-195, October 1997.

[7] J.Ferrante, K.J.Ottenstein, J.D.Warren, \The Pro-
gram Dependence Graph and Its Use in Optimiza-
tion," ACM Transaction on Programming Lan-
guage and System, Vol.9, No.3, pp.319-349, 1987.

[8] J. Hatcli�, J. C. Corbett, M. B. Dwyer, S.
Sokolowski, and H. Zheng, \Formal Study of Slicing
for Multi-threaded Programs with JVM Concur-
rency Primitives," Proc. the Static Analysis Sym-
posium, September 1999.

[9] J. R. Larus and E. Schnarr, \EEL: Machine-
independent Executable Editing," SIGPLAN Con-
ference on Programming Languages, Design and
Implementation, pp.291-300, June 1995.

[10] B. Korel, \Program Dependence Graph in Static
Program Testing," Information Processing Letters,
Vol.24, pp.103-108, 1987.

[11] A. Krishnaswamy, \Program Slicing: An Ap-
plication of Object-Oriented Program Dependency
Graphs," Technical Report TR94-108, Department
of Computer Science, Clemson University, 1994.

[12] D. Kuck, R.Kuhn, B. Leasure, D. Padua, and M.
Wolfe, \Dependence Graphs and Compiler and Op-
timizations," Conference Record of the 8th Annual
ACM Symposium on Principles of Programming
Languages, pp.207-208, 1981.

[13] L. D. Larsen and M. J. Harrold, \Slicing Object-
Oriented Software," Proceeding of the 18th Inter-
national Conference on Software Engineering, Ger-
man, March, 1996.

[14] T. Lindholm and F. Yellin, \The Java Virtual Ma-
chine Speci�cation," Addison-Wesley, 1997.

[15] B. A. Malloy and J. D. McGregor, A. Krish-
naswamy, and M. Medikonda, \An Extensiblesible
Program Representation for Object-Oriented Soft-
ware," ACM Sigplan Notices, Vol.29, No.12, pp.38-
47, 1994.

[16] K. J. Ottenstein and L. M. Ottenstein, \The Pro-
gram Dependence Graph in a software Develop-
ment Environment," ACM Software Engineering
Notes, Vol.9, No.3, pp.177-184, 1984.

[17] A. Podgurski and L. A. Clarke, \A Formal Model
of Program Dependences and Its Implications
for Software Testing, Debugging, and Mainte-
nance," IEEE Transaction on Software Engineer-
ing, Vol.16, No.9, pp.965-979, 1990.

[18] M. Weiser, \Program Slicing," IEEE Transaction
on Software Engineering, Vol.10, No.4, pp.352-357,
1984.

[19] J. Zhao, J. Cheng, and K. Ushijima, \Static Slicing
of Concurrent Object-Oriented Programs," Pro-
ceedings of the 20th IEEE Annual International
Computer Software and Applications Conference,
pp.312-320, August 1996, IEEE Computer Society
Press.

[20] J. Zhao, \Slicing Concurrent Java Programs,"
Proc. Seventh IEEE International Workshop on
Program Comprehension, pp.126-133, Pittsburgh,
PA USA, May 1999.

Testing 2

49

Third Eye — Specification-Based Analysis of Software Execution
Traces

Raimondas Lencevicius Alexander Ran Rahav Yairi
Nokia Research Center

5 Wayside Road
Burlington, MA 01803, USA

Raimondas.Lencevicius@nokia.com Alexander.Ran@nokia.com Rahav.Yairi@nokia.com

ABSTRACT
Testing of complex software systems that operate on
platforms with limited resources and have real-time
constraints is a difficult task. Third Eye is a framework for
tracing and validating software systems using application
domain events. We use formal descriptions of the
constraints between events to identify violations in
execution traces. Third Eye is a flexible and modular
framework that can be used in different products. We use
Third Eye for testing an implementation of the Wireless
Application Protocol (WAP). Our tool is a helpful addition
to software development infrastructure.

Keywords
Software execution tracing, system testing, specification-
based testing, application logic testing, event-based
specifications.

1 INTRODUCTION
Currently many software-intensive systems such as
personal communication devices or communication
network elements integrate many dozens of software
components that are designed to run on different types of
hardware, to interoperate with different environments and
to be configurable for different modes of operation and
styles of use. To complicate the situation further, these
components are often developed by geographically
distributed teams, using different programming languages,
development tools, and even different design and
development methodologies. All this makes complete
testing of these systems in a lab very hard. In these
circumstances, understanding what interaction between
multiple software components caused a fault is an
extremely tedious process. There is a definite need to
update our approaches to testing such systems.

Complexity of modern software led many organizations to
focus on software architecture to simplify software life-
cycle management. Testing is not commonly done against
architectural descriptions because a significant conceptual
gap exists between typical architectural description of
complex software and its implementation.

In the Third Eye project, we have defined a methodology
for tracing software execution by reporting events
meaningful in the application domain or essential from the
implementation point of view. Many of the ideas
incorporated in the Third Eye framework were inspired by
the Logic Assurance system [2] and work on enforcing
architectural constraints [1]. In Third Eye, we have used
different technologies to make the framework more
extensible, to allow its integration with other trace analysis
tools and specification languages. The implemented
prototype of the Third Eye framework includes reusable
software components for event definition and reporting and
stand-alone tools for storage and query of event traces,
constraint specification and trace analysis. We also made
our framework portable to a number of execution
platforms.

2 THIRD EYE ARCHITECTURE
Tracing execution of complex software is a standard
practice in many projects. However, most projects perform
the tracing in an ad-hoc manner with little or no method
and tool support. Often tracing is added in response to
difficulties in system integration testing. In such situations,
traces have neither coherent content nor format necessary
for structured information storage or automatic analysis.
Third Eye transforms a useful ad-hoc technique into a
disciplined engineering practice.

2.1 Third Eye Conceptual Architecture
A central decision of the Third Eye framework is what
information from the execution state of the program is
traced. We decided to trace occurrences of events. Unlike
program variables, function calls and other implementation
domain constructs, events cross the boundary between
application and implementation domains allowing abstract
specifications that use their properties and a simple
representation in the implementation domain. Such
representation helps to produce traces without introducing
new errors. “Event” in this case is a qualitative change in
the state of an entity either meaningful in the application
domain or significant architecturally.

System under
Trace

Event

Tracing State

Event Type

Constraint

Instance of

Specifications

Event Stream

Conforms to
or violates

Produces

Filters Generated Events
Specifies Events to Report

Figure 1. Third Eye Conceptual Architecture

Figure 1 illustrates the Third Eye conceptual architecture.
In the Third Eye framework, events are typed objects. One
way to implement event types is to take advantage of the
programming language type system. This would support
the type safety and inheritance of event manipulating code.
However, we have chosen to make the event type system in
Third Eye external to the programming language. This
allows dynamic definition of new event types as well as
sharing of event types between the event reporting and
event monitoring subsystems that might reside on different
platforms.

An event type has a name, a list of named and typed
properties, and a type constructor. Third Eye event types
are similar to classes in programming languages although
the only method associated with the event type is its
constructor. We allow event type inheritance. Type
constructors minimize the code needed for creating new
events. To report an event, developers specify the type of
the event and sets values of the event properties.
Developers need to set only the properties that were not set
already by the event constructor.

Events in Third Eye are characterized by the time and
location of their occurrence. By “location” we mean the
symbolic location within the executing software. Time may
be measured locally on a specific processor, but needs to
have a globally meaningful interpretation in a
multiprocessor system. Time/Location stamping of the
events is implicit in Third Eye and is done for all events

that are subtypes of TimedEvent and
LocalizedEvent types. Such events have predefined
properties timestamp and location that are set in a
constructor.

Correct behavior specifications define constraints on the
properties of the events, their sequence, location, and
timing. We use formal descriptions of the constraints
between events to identify violations in execution traces.

Another important concept of Third Eye is the tracing
state. A tracing state is a set of event types generated in that
state. Other event types are filtered out and not reported.
The system is always in a specific tracing state. Tracing
states have two important purposes. First, tracing states
correspond to specifications. A program specification
describes a set of constraints on events. The event types
used in a specification have to be monitored to validate a
trace against this specification. All event types contained in
a specification and monitored for this specification form a
tracing state. Consequently, there is a mapping between
specifications and tracing states. This mapping allows to
filter out events irrelevant to the specification.

Tracing states also control the overhead of tracing on the
executing system. A control interface is provided to
dynamically define and change tracing states. For example,
the level of tracing detail can be increased in response to
observation of an anomaly in system behavior.

System under
Trace

Reporting
Facility

Events
Traces

Tracing State
Controller

Third Eye Tracer

Database
Browsing,
Queries &

Visualization
SQL, Prolog, etc.

Filtered Event
 Stream

Update Event Tables

Correct
Behavior

Specifications

Generate Execution
Monitoring & Analysis
Program from formal
specifications of possible
traces of correctly
functioning system

Trace Analysis
Tools

SUT deployment
boundary

Change Tracing State

Figure 2. Third Eye Module Structure

2.2 Third Eye Modules and Interfaces
The Third Eye framework includes modules for event type
definition, event generation and reporting, tracing state
definition and management, specification-based trace
monitor generation, trace logging, query and browsing
interfaces and trace visualization (Figure 2). Modules of
event type definition, event reporting facility and tracing
state controler are integrated with the software of the
system under trace (SUT). The rest of the modules are
independent from the SUT and can be deployed on a
different execution platform to minimize the influence on
system performance.

The Third Eye module structure is designed for different
modes of operation. Users do not need to learn and manage
modules of the framework that are not relevant to their
project. Thus, for example, it is possible to use the Third
Eye framework only to store a stream of events in relational

database without correct behavior specification and
analysis components.

The module structure was partitioned along the lines of
standard interfaces to achieve portability and to enable
integration to third party software and tools. For example,
the event reporter and tracer can be connected through a
file, a socket, or using an ORB. Trace delivery for logging
and analysis uses alternative interfaces to accommodate
devices with different data storage and connectivity
capabilities.

3 USING THIRD EYE
We have implemented a Third Eye framework prototype
that is currently used by the Third Eye project team in
collaboration with product development teams in Nokia’s
business units. Figure 3 illustrates Third Eye’s use in the
software development process.

Identify event types in
the domain space

Define system behavior as
relationships between
events in a stream of
reported events

Add event
reporting to the
system software

Monitor event stream to
ensure consistency of
implementation and
specifications

Requirements
Event Type
Definition Specifications Test Runs

Analysis Design Development Testing & QA

Figure 3. Third Eye in Software Development Process

We used Third Eye to test a number of software systems:
the memory subsystem of one of Nokia’s handsets,
Apache Web Server, and WAP (Wireless Application
Protocol) [3] client. In this section, we describe the testing
of WAP client protocol layers and conformance to the
logical scopes design discipline explained below.

Wireless Application
Environment (WAE)

SMS USSD CSD R-Data Packet UDP PDC-P Etc...

Bearers:

Wireless Session Layer (WSP)

Wireless Transport Layer Security (WTLS)

Wireless Datagram Protocol (WDP)

Other Services and
Applications

Wireless Transaction Protocol (WTP)

Figure 5. WAP layered architecture

The Wireless Application Protocol (WAP) is an industrial
standard for applications and services that operate over
wireless communication networks. WAP layered
architecture (Figure 5) provides an application layer
through Wireless Session Protocol (WSP) that interfaces
to session services. A connection-oriented service
operates above the Wireless Transaction Protocol (WTP)
layer. The WTP runs on top of a datagram service.

W S P W T P

S - M e t h o d . r e q

T R - I n v o k e . r e q

S - R e p l y . i n d
T R - R e s u l t . i n d

Figure 6. WSP-WTP primitive sequence for request-
response

3.1 Validating WAP primitive sequences
When an application requests information through the
WAP protocol, such request passes through protocol
layers as a sequence of primitives defined by the WAP
standard. Specifically, a request for information by an
application is handled as a method invocation at the
session layer (WSP). In turn, this method invocation is
translated into a transaction at the transaction layer (WTP)
(Figure 6). In detail, the invocation of an S-Method
request is followed by the invocation of the TR-Invoke
request. When the transaction returns a TR-Result result,
it is used in S-Reply that forwards received information to
the application. We have simplified the message diagram
in Figure 6 for clarity purposes. The full message

sequence contains additional confirmations and
acknowledgements.

Although the message sequence in the protocol
specification is rather simple, it spans two protocol layers,
a number of implementation files and functions, and is not
easy to validate. Furthermore, the protocol allows many
outstanding method invocations and many outstanding
transactions, making user tracking of the protocol state
very difficult. Third Eye simplifies this process. With
Third Eye users add events in the functions that
correspond to the protocol primitives and then check
whether the event sequence corresponds to the protocol
message sequence. To monitor the WSP-WTP primitive
sequence, we defined the following event types:

te_event_type("S-Method.req",
 TIMED, "Transaction ID", INTEGER)
te_event_type("TR-Invoke.req",
 TIMED, "Transaction ID", INTEGER)
te_event_type("TR-Result.ind",
 TIMED, "Transaction ID", INTEGER)
te_event_type("S-Reply.ind",
 TIMED, "Transaction ID", INTEGER)

The first parameter of definitions specifies the type name
of the event, for example "S-Reply.ind". The second
parameter indicates the constructor to be used, in this case
the TIMED constructor that sets an inherited timestamp
property. The third and fourth parameters specify the first
property of the event, which for all types above is called
Transaction ID and is an integer.

After defining event types, the event invocations are
placed in corresponding functions and events are reported
during testing in an event trace. The event stream can be
read from a socket or from a storage device like a file.
Events are mapped to SQL statements and stored in a
database. Events can also be mapped to Prolog clauses to
be stored in a Prolog fact file. These mappings are simple
because Third Eye event structure corresponds to SQL
tables and Prolog predicates. The tracer has a graphical
user interface that allows the system tester to change the
tracing state during runtime.

Events and event type information are stored in an SQL
database through the ODBC interface. System testers can
use DBMS query and reporting tools to visualize system
behavior and to browse the stored event information. This
provides an interface to find errors without writing a
system specification.

Third Eye checks the trace using constraints that specify
the correct event sequence:

method_with_result(TransactionID) :-
 S-Method.req(TransactionID, Time1),
 TR-Invoke.req(TransactionID, Time2),
 TR-Result.ind(TransactionID, Time3),
 S-Reply.ind(TransactionID, Time4),
 Time1 < Time2 < Time3 < Time4.

This constraint is expressed as a Prolog rule. The constraint
requires the protocol primitives to follow each other in a
correct order. When Third Eye checks a trace, it finds all
events corresponding to the constraint and alerts the user if
any events do not satisfy the constraint. In this example, the
trace will contain events of four types defined above:

S-Method.req(1, 100)
TR-Result.ind(2, 150) // Violation
TR-Invoke.req(1, 200)
TR-Result.ind(1, 300)
S-Reply.ind(1, 400)

Third Eye will match all events corresponding to the given
constraints. In our example, it will match four events with
transaction number 1. These events are tagged as
conforming to the specification. The events that remain
untagged after matching violate the constraints. In this
example, TR-Result.ind(2, 150) event violates
the constraint, and the system informs the user that program
behavior contains errors. Since this method of constraint
testing would flag all events of types that do not appear in a
constraint, such events should be excluded from the trace
by using a tracing state.

3.2 Logical scopes in WAP implementation
While investigating the WAP implementation as well as
implementations of other software systems, we became
aware of the general design problem of resource
management. Resources, especially in embedded systems,
are limited. Resources that are allocated and not released or
that are released too late could cause a decrease of
performance or a system crash. The objective is to design a
methodology in which resource management is explicit,
easy to maintain and where violations can be easily
identified.

In many cases, system functionality can be characterized as
a set of nested tasks that have beginning and end. To
perform a task, a system requires certain resources such as
memory, processor time, input focus, persistent data locks,
or virtual paths. Functional tasks establish scopes in which
logical and physical resources are allocated and freed. The
scope can be establishing and terminating a call on a
mobile phone, handling an authentication request on a
security server, establishing and terminating a virtual
connection on an ATM node and so on. There is usually no
single control scope such as a function call and return that
delimits the life span of the task. This makes it hard to
determine which resources were allocated to perform this
specific task, when the task has been completed, and when

resources can be freed.

The key to our approach to managing resources is the
notion of a logical scope. A logical scope is the time span
between beginning and termination of a task. Although it
may be hard to represent logical scopes in the structure of
the software, it is usually possible to identify where a
logical scope begins and where it terminates. It is then
possible to define events that represent beginning and
termination of different logical scopes. One can also create
specifications of resources that are required within a scope.
If allocation and release of these resources is reported to
Third Eye, the Third Eye framework can monitor
correctness and efficiency of resource management within
logical scopes. A generic rule for logical scope validation is
validate_scope:

validate_scope :-
 task_begin(TaskID, TaskBeginTime),
 resource_allocation(ResourceID,
 TaskID, AllocTime),
 resource_free(ResourseID, FreeTime),
 task_end(TaskID, TaskEndTime),
 TaskBeginTime < AllocTime < FreeTime
 < TaskEndTime.

In the WAP implementation, there are numerous places
where the logical scope model is used. For example, in the
WTP layer a transaction handle is allocated at the
beginning of a transaction and deallocated at the end.
Packets sent in a transaction by the WTP adaptation layer
are allocated before sending and deallocated when the next
message is sent (Figure 7). Packet allocation, transmission,
and deallocation form a nested scope inside the transaction
scope. Neither the transaction scope, nor the packet sending
subscope corresponds to a single textual entity in the
program. Both encompass a number of function calls,
internal message sends, and are intertwined with other
logical scopes and layers. Consequently, enforcing the rules
of logical scope design, i.e. deallocation of resources
allocated in the beginning of a scope, is difficult using
conventional means. However, Third Eye allows a simple
validation of the design by inserting allocation and
deallocation events together with the logical scope
boundary events and specifying design constraints. The
rules mirror similar rules without logical scopes. For
example, a general packet deallocation rule is:

packet_deallocate_spec
 (Packet, AllocTime, DeallocTime) :-
 packet_allocate(Packet, AllocTime),
 packet_deallocate(Packet, DeallocTime),
 DeallocTime > AllocTime.

Adding the logical scope boundaries simply adds a
condition:

packet_deallocate_logical(Packet) :-
 packet_deallocate_spec
 (Packet, AllocTime, DeallocTime),
 same_scope_follows(AllocTime,
 DeallocTime).

same_scope_follows(Time1, Time2) :-
 scope_begin(ScopeBeginTime),
 scope_end(ScopeEndTime),
ScopeBeginTime<Time1<Time2<ScopeEndTime.

W T P T ra n s a c t io n B e g in

W T P P a c k e t A llo c a te

W T P P a c k e t D e a llo c a te

W T P P a c k e t S e n d

W T P T ra n s a c t io n E n d

W T P P a c k e t A llo c a te

W T P P a c k e t S e n d

W T P P a c k e t D e a llo c a te

… … … … … …

Figure 7. WTP transaction scope and nested packet
allocation sub-scope

3.3 Global constraints in WAP
Although previous sections dealt with properties of the
protocol expressed as sequences of events, Third Eye can
monitor much wider variety of constraints. For example,
the tool can check a property that all packets with low
sequence numbers arrive within a certain amount of time:

lost_packet(PacketNumber) :- not(
 packet_received(PacketNumber, T)),
 PacketNumber < LOW_BOUNDARY.

The Third Eye can also check whether the number of
maximum outstanding method requests in a session layer is
less than the maximum possible value. Violation of such
constraints could be difficult to spot with conventional
tools.

4 CONCLUSIONS
Third Eye can be used for debugging, monitoring,
specification validation, and performance measurements.
All these different scenarios use typed events—a concept
simple and yet expressive enough to be shared by product
designers and developers. Users can achieve the system-
testing goals without delving into complicated concepts
like formal methods or database programming.

The Third Eye is designed with an open architecture.
Therefore, the third party tools, including databases,
analysis and validation tools, can be easily added or

exchanged.

Several features of our prototype framework were essential
to make it practical to use in product development:

• Portability—by defining a simple API for the SUT
and by not relying on a specific interface between the
SUT and the Tracer, Third Eye can be integrated into
many different systems throughout Nokia. The trace
structure conforms to the data-management tool
formats and allows automatic trace analysis for
specification verification.

• Low overhead—event processing is mostly done
outside the SUT. Adding a dynamic filtering allows the
user to control which events will be reported back to
the tracer.

We believe that the Third Eye is a practical framework for
specification-based analysis and adaptive execution tracing
of software systems.

REFERENCES

[1] R. Balzer, Enforcing Architecture Constraints, SIGSOFT’96
Workshop, San Francisco, CA, pp. 80-82, 1996.

[2] Shtrichman, O.; Goldring, R., The ’Logic Assurance (LA)’
system-a tool for testing and controlling real-time systems.
Proceedings of the Eighth Israeli Conference on Computer
Systems and Software Engineering, pp. 47–55, 1997.

[3] WAP protocol, WAP forum, http://www.wapforum.com,
2000.

Testing, Proof and Automation. An Integrated Approach

Simon Burton John Clark John McDermid

Department of Computer Science.
University of York,
Heslington, York.

YO10 5DD, England.
+44 1904 432749

fburton, jac, jamg@cs.york.ac.uk

Abstract

This paper presents a discussion on the complementary
roles of testing and proof within automated software ver-
ification and validation processes. We demonstrate how a
combination of the two approaches can lead to greater lev-
els of automation and integrity. In particular we discuss
the use of automated counter-example generation to sup-
port proof, and automated proof as a means of automating
and checking test case generation. The high levels of au-
tomation are made possible by identifying repeating struc-
tures in the proofs, restricting the specification to a subset
of an otherwise expressive formal notation and exploit-
ing a general–purpose theorem proving tool with built-in
constraint solvers.

1 Introduction

In the past, testing and proof have not been easy bed-
fellows. Despite their shared goal of increased software
quality, proof has been seen as being for the cognoscenti,
testing for software engineering’s working class. The au-
thors believe that this artificial dichotomy is harmful and
that testing and proof can be used together to good ef-
fect. Even without the benefits of formal refinement, for-
mal specifications can contribute greatly to the quality of
a software product. They allow for a concise, unambigu-

ous and explicit specification of the desired behaviour of
the system. As such, they are a good basis for automated
test activities. Additionally, testing to generate counter-
examples to proofs can save much effort and produce il-
lustrative examples for debugging.

The use of formal specifications themselves is still seen
by many as a barrier to the widespread industrial usage
of formal methods. For the benefits of formal methods
in V&V to be fully exploited in industry there is a need
to “disguise” the formality in some way [15]. Recent
work [5] has shown that formal specifications and the cor-
responding proof obligations for specification validation
can be generated from more intuitive engineering nota-
tions with mathematical underpinnings. Such an approach
not only enables engineers with the domain knowledge
to use specification notations they are comfortable with,
but the translation to formal specification has the effect
of restricting the subset of the formal notation used and
imposes regular structures on the proofs that need to be
discharged to validate certain properties (such as com-
pleteness and determinism) in the specification. These
restrictions, coupled with the subset of data types used
for particular domains can be exploited to develop power-
ful targeted heuristics for automating the V&V activities.
The approaches discussed in this paper are assumed to be
undertaken in the context of formal specifications gener-
ated in this manner.

In the rest of the paper we describe how a combination

of testing, proof and restricted structures in the specifi-
cation can be used to enhance both the integrity and au-
tomation of several areas of the software verification and
validation process. This symbiotic relationship between
testing and proof is made feasible by extending previous
work on testing from formal specifications and making
use of a flexible theorem proving tool with integrated con-
straint solvers.

The paper is structured as follows. Section 2 discusses
the role of testing in the automatic generation of counter-
examples to proofs. Section 3 describes how proof can
be used as a means of verifying automated test case gen-
eration strategies and also as a means of performing the
automation itself. We also show how more effective test-
ing strategies can be developed based on the automatic
generation of formally specified test cases and how proof
can be used as a testing oracle. Section 4 summarises the
main contributions of the work and presents some conclu-
sions.

2 Testing and Proof

Proof conjectures can arise at various points in the V&V
process. For example, to ensure that a specification sat-
isfies certain “healthiness” criteria such as completeness
and determinism or to verify that a program is a correct
refinement of its formal specification. In all cases, in-
valid conjectures can waste a large amount of proof effort.
Therefore, before a long and arduous manual proof is em-
barked upon it is re-assuring to have a good degree of con-
fidence in the validity of the conjecture. Use of constraint
solving techniques to generate counter-examples not only
saves proof effort but can provide illustrative information
to use when tracking the fault. The generation of counter-
examples to verify properties of a specification couched in
terms of proofs is a form of testing. Typically sample data
are generated and then tested to see whether they break
the specification. If this is the case, a counter-example
has been found.

Constraint solving in general is known to be intractable
[13]. However, in practical situations, one never needs
to solve “general” constraints but a particular subset that
have restricted structures and particular input space char-
acteristics. These properties can be exploited to automate
the search for counter-examples. The authors use the Z

[16] type checker and theorem proverCADiZ [19] to au-
tomate this task. In this sense our usage ofCADiZ is sim-
ilar to that of the Nitpick Z-based specification checker
[12] that used model-checking techniques to generate
counter-examples to specification assertions. However,
CADiZ has the additional flexibility that general purpose
proof tactics can be written (using a lazy functional nota-
tion [20]), that can be invoked interactively from within
the tool and applied to any proof obligation on the screen.
Proof tactics have been written that attempt a best effort
at automatically proving conjectures of certain types (e.g.
completeness checks). If the proof fails or is inconclusive,
the tactics then perform some simplification to transform
the conjecture into a suitable form for the integrated con-
straint solvers. A number of constraint solvers can then
be invoked to attempt counter-example generation, these
include a model-checker (SMV [3]) and a simulated an-
nealing based heuristic search [6]. The amount of simpli-
fication required before the constraint solvers can be effi-
ciently applied will depend on the structure of the proof
obligations.

Such automated proof tactics have been used to good
effect when a large number of similar proof conjectures
were needed to be solved [5]. A situation which would
have otherwise been time consuming if done manually
and could have led to “reviewer blindness” leading to
missed error cases. Different constraint solvers have been
found to be effective for different input domains. For ex-
ample model-checking is only practical for discrete input
domains, whereas optimisation-based search techniques
are also suited to infinite state spaces and non-linear con-
straints.

3 Proof and Testing

Formal specifications are a good basis for testing. They
allow for a concise and unambiguous representation of the
requirements and are amenable to proof and automated
analysis. Test generation techniques for model-based for-
mal specifications [14, 8, 17] such as Z [16] or VDM-SL
[10] are typically based on the principle of partitioning
the specification into equivalence classes [9]. Equivalence
classes are partitions of the specification input space that
are assumed, for the purpose of testing, to represent the
same behaviour in the specification. Such techniques are

amenable to automation and tool support. However, as in
all cases where automation is introduced, and especially
for high integrity systems, the integrity of such tools is of
great importance. For automated testing to be able to pro-
vide confidence in the conformance of the software to its
specification, the test generation strategies must be both
verified and validated. In other words, they must not only
be shown to be correctly implemented but must also be
shown to be adept at finding errors in the implementation.

3.1 Verification of Automated Testing
Strategies

There are various criteria that can be used when verifying
that test partitioning strategies have been correctly imple-
mented. For example, the tests can be shown to com-
pletely cover the valid input space of the original speci-
fication. If this were not the case, important parts of the
implementation, that could possibly contain faults might
remain untested. If the resulting tests are represented us-
ing the same formal notation as the original specification,
these verification activities can be performed using proof.
The completeness of the generated tests (T1::Tn) with re-
spect to the original specification (Spec) can be verified by
proving a conjecture of the following form:

Theorem1 :
` 8 Inputs � Spec , T1 _ ::: _ Tn

An example partitioning strategy identifies expressions
in the specification of the formA _ B and partitions
these into the following test casesA ^ B , :A ^ B and
A ^ :B [8] whereA andB could be complex predicates
themselves. The conjecture used to prove that these par-
titions preserve the valid input state-space of the original
specification would therefore take the following form:

Theorem2 :
` 8 Inputs � A _ B ,
(A ^ B) _ (:A ^ B) _ (A ^ :B)

This theorem can be proven in a few simple steps. The
same proof steps can be used regardless of the structure
of the expressions represented byA andB . In general,
a proof can be derived for each partitioning strategy and
used to verify the outcome each time that strategy is ap-
plied. Using the proof tactic mechanism inCADiZ the au-

thors have automated these proofs for a number of com-
mon partitioning strategies. Whenever a strategy is ap-
plied, the corresponding correctness proof can be auto-
matically invoked on the result. This ensures that, what-
ever the means of test generation, theresultcan always be
shown to be valid or otherwise. The tool can be instructed
to record the individual proof steps taken in applying a
proof tactic and these can be printed in a form amenable
to human scrutiny. Therefore, if the tool cannot be trusted,
a rigorous argument can be developed to support the va-
lidity of the proof steps.

Given a formal definition of a testing strategy as an
equivalence (e.g.Theorem 2above), the derivation of the
test cases themselves can also be automated using general
purpose proof tactics. The principle is similar in operation
to the use of Disjunctive Normal Form (DNF) to simplify
an expression into a disjunction of conjuncts that can each
be used as separate test cases. Where conversion to DNF
uses simple logic rewrite rules to distribute disjunctions,
more targeted equivalences can be formulated based on
common testing heuristics.

Test partitioning based on the formal specification of
the testing heuristics has been implemented usingCADiZ
proof tactics. Generic partitioning strategies are specified
as equivalences in the form ofTheorem 1. A proof tactic is
invoked upon the predicate to be partitioned to instantiate
the generic equivalence with the operands of the predi-
cate and simplify the whole specification to reveal a dis-
junction of partitions. Each test case is equivalent to the
original specification where the input space has been con-
strained according to one of the partitions. The complete-
ness of the partitioning strategy is left as a side conjecture
to prove to ensure that the partitioning was valid. This can
be automated by extending the partitioning tactic with the
general purpose proof for the strategy as described above.
The following simple example demonstrates how test par-
titions are derived. The example specification calculates
the square root (r !) of a positive integer (n?) and the test
partitions are generated using boundary value analysis of
the� operator (based on the premise that errors often oc-
cur on or around the boundary [2]).

The specification is given as the following Z schema1

1? and! are Z convention for inputs and outputs respectively.

SquareRoot

n?; r ! : R

n? � 0 ^
r !� r ! = n?

The boundary value analysis test heuristic for real num-
bers is specified as the following equivalence. Note that
the “just-off” the boundary case is chosen here as 0.1.
This value may vary for different applications and would
chosen by the tester based on various application at-
tributes such as the resolution of the concrete types used
to implement the abstractR type.

` 8 x ; y : R � x � y ,
(x = y) _ (y < x � y + 0:1) _ (x > y + 0:1)

An un-partitioned test specification for the schema is
described as an existential quantifier as follows:2

` 9n?; r ! : R � n? � 0 ^ r !� r ! = n?

The partitioning theorem is now introduced and instan-
tiated with the local operands. The partitioning theorem
is left as a side condition that should be proven before
the test cases can be considered valid. This results in the
following theorem:

8 x ; y : R � x � y ,
(x = y) _ (y < x � y + 0:1) _ (x > y + 0:1)
` 9n?; r ! : R � n? � 0 ^ r !� r ! = n? ^
((n? = 0) _ (0 < n? � 0 + 0:1) _ (n? > 0 + 0:1))

The side condition is proven (e.g. using a pre-
determined proof tactic) and the existential quantifier sim-
plified to leave the following three test cases.

` 9n?; r ! : R � n? � 0 ^ r !� r ! = n? ^
n? = 0

` 9n?; r ! : R � n? � 0 ^ r !� r ! = n? ^
0 < n? � 0:1

2This can be roughly interpreted as: there exist some values forn?

andr ! that satisfy the specification and can therefore be used as suitable
test data.

` 9n?; r ! : R � n? � 0 ^ r !� r ! = n? ^
n? > 0:1

Once the test partitions have been produced, satis-
fying test data can be generated by “solving” the ex-
istential quantifications using the constraint solvers in
CADiZ. The partitioning method described above sup-
ports work by Stocks and Carrington [17, 18]3 who pro-
posed a framework for the derivation and specification
of test cases based on the Z notation (the Test Template
Framework). The method of test case derivation described
here complements that work by providing a mechanism
for automatically applying the test heuristics to reveal the
test partitions that can then be structured using the Test
Template Framework.

3.2 Validation of Automated Testing Strate-
gies

Mutation testing [7] is a fault-based testing technique that
deliberately injects faults into a program in order to as-
sess a test set’s adequacy at detecting those faults. Based
on the number of injected faults detected (mutation score),
conclusions about the general fault finding ability (muta-
tion adequacy) of the test set can be formed. Mutation
testing provides a means of validating the test strategies
discussed in the previous section. Automatic test case
generation, as described above, can provide a statistically
significant number of test cases for various strategies. The
mutation adequacy of each of these strategies can then be
assessed to compare their relative effectiveness at detect-
ing faults [1].

Expressing a test case specification as a formal specifi-
cation from which the test data are generated also opens
up the possibility for some additional manipulation to in-
crease the mutation score of the data. Mutation techniques
can be applied at the specification level to create specifi-
cations that represent an abstract description of potential
faults in the implementation (as first suggested by Budd
and Gopal [4]). If test data can be generated from the
original specification that identify (kill) the mutants, that
data is also likely to achieve a relatively high score at
the program level. The data generated from the specifi-
cation would have been “hardened” in some sense against

3As well as building on other important work in the area such as
[11, 14, 8].

the likelihood of encountering co-incidental correctness
in the implementation.

In general, the number of mutants that can be gener-
ated for an expressive formal specification notation such
as Z would be extremely large. However, in practice, only
a subset of the notation would be used for any particular
application domain. In this case, the number of possi-
ble mutants would be limited. From within this subset
more selective choices of which mutation strategies to ap-
ply can be made by analysing the mutation score of par-
ticular testing strategies. Hardened test data can then be
generated from the test cases by strengthening the predi-
cate of the test case to improve the probability that data are
generated to kill the chosen set of specification mutants.
In some cases, one set of test data could be generated to
kill a number of mutants. However, where the hardening
predicates are inconsistent, several sets of test data may
need to be generated. Take as an example, the following
simple test case for a system which averages two num-
bers:

9A;B ;Result : N � Result = (A+ B)div2

The test data can be hardened against the mutation
where the+ is replaced by a� by adding an inequality to
the test case.

9A;B ;Result : N j (A+ B) 6= (A� B) �
Result = (A+ B)div2

The hardening predicate in this case was(A + B) 6=
(A � B). This represents a necessary condition for de-
tecting the mutant but, in general, will not always be suf-
ficient. Depending on other mutations that may arise else-
where in the implementation, the new test case can not be
guaranteed to produce data which kills the mutant, but is
more likely to do so than without the hardening predi-
cate. Mutation analysis was briefly mentioned by Stocks
and Carrington [17] as an alternative testing heuristic to
domain propagation in their Test Template Framework.
However, the authors believe there is still scope for re-
search in investigating effective mutation strategies for
Z-based test sets and whether mutation analysis can be
combined with standard domain partitioning to provide
more effective test sets. Therefore, future work will evalu-
ate various criteria for designing the hardening predicates
and their relative efficacy at increasing mutation scores

when applying the tests to the implementation. If harden-
ing predicates could be automatically generated based on
a known set of specification mutations, it may be possi-
ble to use the feedback from traditional mutation testing
approaches (for assessing the effectiveness of test sets) to
automatically select the most effective test strategies for
particular types of program.

3.3 Proof as a Testing Oracle

Test data generated from formal specifications are typi-
cally not at the same level of abstraction as is needed
to test the implementation. Some refinement will be
needed to exercise the implementation with the test in-
puts. For implementations which do not preserve the
structure of the original specification this refinement
may be difficult. In addition, some specifications may
be non-deterministic, eliminating the possibility of pre-
calculating expected test results.

An alternative to the structured decomposition of the
specification into test cases and expected results, as dis-
cussed above, is to use a “generate and test” approach.
Test inputs are chosen via any means (e.g. randomly)
and the results of applying the inputs to the implemen-
tation are then checked for conformance with the speci-
fication. This approach can also be used in conjunction
with the partition-based testing. A statistically significant
number of samples can be chosen from each test parti-
tion to increase the confidence in the equivalence class
hypothesis used to generate the test cases. In either case,
the process of checking the test inputs and outputs against
the specification requires a test “oracle”. If enough re-
finement information is known to transform the concrete
inputs and outputs of the system into their equivalent in
the abstract specification, the formal specification and au-
tomated proof tactics can be exploited to form an auto-
mated oracle. The specification is instantiated with the
inputs and outputs and a proof tactic is used to simplify
the expression toTrue (test passed) orFalse(test failed).
Such simplification is ideally suited to automated theo-
rem provers as it typically involves applying many “one-
point” simplifications until the expression is reduced to
eitherTrueor False.

4 Conclusions

In this paper we have shown how judicious use of testing
and proof to support one another can lead to significant
benefits for the software V&V process, both in terms of
increased automation and integrity. The use of counter-
example generation can save much wasted proof effort
and the use of proof to support test case design can be
used to demonstrate the correctness of the test partition-
ing techniques as well as offering a means of automation
in itself.

The high level of automation is made possible because
of the combination of restricting the subset of the formal
notation used, the ability to predict the structure of the
proofs that are required (and therefore the ability to re-
use proof tactics many times) and the use of a powerful
theorem proving tool with integrated constraint solving
abilities. In the authors’ experience in aerospace applica-
tions, these restrictions did not need to be contrived but
occurred naturally as a property of the domain and the
types of proof that were performed.

Some of the techniques described here (e.g. counter-
example generation and automated test case and data gen-
eration) have already been applied to a large industrial
case study [5]. Other techniques, (e.g. automated proof
as a testing oracle and application of mutation testing con-
cepts) require more research to fully explore their poten-
tial. In particular, the use of mutation testing techniques,
both at the code and specification level appears a promis-
ing method of automatically generating effective and ef-
ficient test criteria for Z-based testing of particular appli-
cation domains. This is an area of research that is made
possible by the automated framework described in this pa-
per and will be the focus of future work.

5 Acknowledgements

This work was funded by the High Integrity Systems and
Software Centre, Rolls-Royce Plc.

References

[1] S.P. Allen and M.R. Woodward. Assessing the qual-
ity of specification-based testing. In Sandro Bologna

and Giacomo Bucci, editors,Proceedings of the
third international conference on achieving qual-
ity in software, pages 341–354. Chapman and Hall,
1996.

[2] Boris Beizer. Software Testing Techniques. Thom-
son Computer Press, 1990.

[3] Sergey Berezin. The SMV web site.
http://www.cs.cmu.edu/˜modelcheck/
smv.html/, 1999. The latest version of SMV
and its documentation may be downloaded from
this site.

[4] Timothy A. Budd and Ajei S. Gopal. Program test-
ing by specification mutation.Computer Languages,
10(1):63–73, 1985.

[5] Simon Burton, John Clark, Andy Galloway, and
John McDermid. Automated V&V for high integrity
systems, a targeted formal methods approach. In
Proceedings of the 5th NASA Langley Formal Meth-
ods Workshop, June 2000.

[6] John Clark and Nigel Tracey. Solving constraints
in LAW. LAW/D5.1.1(E), European Commission -
DG III Industry, 1997. Legacy Assessment Work-
Bench Feasibility Assessment.

[7] Richard A. DeMillo, Richard J. Lipton, and Freder-
ick G. Sayward. Hints on test data selection: Help
for the practicing programmer.IEEE Computer,
pages 34–41, April 1978.

[8] J Dick and A Faivre. Automating the generation and
sequencing of test cases from model-based specifi-
cations.FME’93:Industrial Strength Formal Meth-
ods, Europe. LCNS 670, pages 268–284, April 1993.

[9] John B Goodenough and Susan L Gerhart. Towards
a theory of test data selection.IEEE Transactions
On Software Engineering, 1(2):156–173, June 1975.

[10] The VDM-SL Tool Group.The IFAD VDM-SL Lan-
guage. The Institute of Applied Computer Science,
September 1994.

[11] P A V Hall. Towards testing with respect to for-
mal specifications.Second IEE/BCS Conference On
Software Engineering, pages 159–163, 1988.

[12] Daniel Jackson and Craig Damon. Elements of style:
Analyzing a software design feature with a coun-
terexample detector.IEEE Transactions on software
engineering, 22(7):484–495, July 1996.

[13] A. K. Mackworth. Consistency in networks of rela-
tions. Artifical Intellegence, 8:99–118, 1977.

[14] Thomas J Ostrand and Marc J Balcer. The
category-partition method for specifying and gener-
ating functional tests.Communications of the ACM,
31(6):676–686, June 1988.

[15] Martyn Ould. Testing - a challenge to method
and tool developers.Software Engineering Journal,
39:59–64, March 1991.

[16] J. M. Spivey.The Z Notation: A Reference Manual,
second edition. Prentice Hall, 1992.

[17] Phil Stocks and David Carrington. Test template
framework: A specification-based case study.Pro-
ceedings Of The International Symposium On Soft-
ware Testing And Analysis (ISSTA’93), pages 11–18,
1993.

[18] Phil Stocks and David Carrington. A framework for
specification-based testing.IEEE Transactions On
Software Engineering, 22(11):777–793, November
1996.

[19] I. Toyn. Formal reasoning in the Z notation using
CADiZ. 2nd International Workshop on User In-
terface Design for Theorem Proving Systems, July
1996.

[20] Ian Toyn. A tactic language for reasoning about Z
specifications. InProceedings of the Third Northern
Formal Methods Workshop, Ilkley, UK, September
1998.

Test Generation and Recognition with Formal Methods

Paul E. Ammann Paul E. Black

George Mason University National Institute of Standards and Technology

Information & Software Eng. Dept. 100 Bureau Dr., Stop 8970

Fairfax, Virginia 22033 USA Gaithersburg, Maryland 20899 USA

pammann@gmu.edu paul.black@nist.gov

Abstract

The authors are part of a larger group at the
National Institute of Standards and Technology
(NIST), George Mason University (GMU), and
the University of Maryland, Baltimore County
(UMBC). Projects directed by group members use
formal methods, particularly model checking, to
investigate the generation and recognition of test
sets for software systems. Our positions, in or-
der of increasing potential controversy, are 1) the
use of speci�cations is an important complement
to code-based methods, 2) test set recognition is as
important as test set generation, and 3) in spite
of some known limitations, our generic frame-
work for testing, with a test criterion as a pa-
rameter and a model checker for an engine, is a
general approach that can handle many interest-
ing speci�cation-based test criteria.

1. Our Relevant Work

For the context of our position, we summarize
our recent contributions to speci�cation-based
testing using a model checker. Model checkers,
which evaluate �nite state machines with respect
to temporal logic constraints, are chosen in favor
of theorem proving approaches because 1) signif-
icantly less expertise is required of the end user,
thereby enhancing automation, 2) model checkers
are enjoying an explosive growth in applicability,
and 3) the counterexamples from a model checker
may be directly interpreted as test cases.

In our original paper on the topic [4], we de-
�ned mutation testing for model checking spec-
i�cations, speci�cally SMV descriptions. We
de�ned one class of mutation operators that

changed the state machine description; these op-
erators result in failing tests, that is, tests that a
correct implementation must reject. We de�ned
another class of mutation operators that changed
the temporal logic constraints on the state ma-
chine; these operators result in passing tests, that
is, tests that a correct implementation must ac-
cept. The model checker identi�es equivalent mu-
tants: these are temporal logic constraints that
are consistent. We generated tests for a small ex-
ample, ran them against a target implementation,
and measured code branch coverage.

Generating tests to \kill" all mutants is the
�rst test criterion we investigated. Some other
speci�cation-based criteria are stuck-at faults [1],
CCC partitions [6], MC/DC [7], automata the-
oretic [8], branch coverage [10], disconnection or
redirection faults [11], and transition pair cover-
age [13]. Test generation then is the problem of
�nding tests which ful�ll the goals embodied in
the criterion. Test set recognition is the conju-
gate of test generation. Whereas test generation
asks, \What tests will satisfy the test criteria?",
test recognition asks, \How much of the test cri-
teria do these tests satisfy?"

In follow-on work [3], we addressed test set
recognition for a re�nement of the mutation anal-
ysis scheme. In particular, we de�ned a metric in
terms of number of mutants killed by a given test
set compared to the total number of killable mu-
tants. We showed how to turn tests from a can-
didate test set into "forced" state machines and
then use the model checker to compute the metric.
We analyzed various factors that could introduce
distortions, such as semantically equivalent mu-
tants and mutants that are killed by every test
case, were analyzed.

We analyzed di�erent mutation operators both
theoretically and empirically [5]. For theoretical
analysis, we applied predicate di�erencing and a
hierarchy of fault classes [12]. To experimentally
con�rm the conclusions, we generated tests us-
ing many mutation operators for three di�erent
small examples and compared relative coverage of
the di�erent operators. Although mutation oper-
ators do not correspond exactly to fault classes,
we found good correlation between them. We de-
�ned a composite mutation operator which gave
the maximum coverage, and found a single muta-
tion operator which gave nearly-maximum cover-
age using far fewer mutants.

Although the above methods work well for
state machine speci�cations, most speci�cations
are written at higher levels in Z, UML, OCL,
SCR, etc. So to be practical, there must
be (semi-)automatic ways of extracting simpler
pieces which can be analyzed. In [2] we de�ned a
new algorithm to abstract a simple state machine,
focusing on some states of interest to an analyst,
from an unbounded description. We proved that
the algorithm is sound for test generation. That
is, any test produced corresponds to a passing
tests in the original unbounded description.

We also applied the work to the problem of net-
work security [14], particularly cases where con-
�guration changes on one machine can lead to vul-
nerabilities on other machines in a network. Net-
work con�gurations were encoded as a state ma-
chine, along with the transformations produced
by known attacks. Security policies are stated in
the temporal logic in forms such as "Under a set of
assumptions, someone outside the �rewall cannot
obtain root access on machine X." If the con�g-
uration in fact allows such access given the set
of known attacks, a counterexample is produced
illustrating the attack.

In work underway, we encoded di�erent test
criteria as temporal logic constraints. Us-
ing a model checker, we analyzed branch cov-
erage [10], uncorrelated full-predicate coverage
(similar to Multiple Condition/Decision Coverage
or MC/DC [7]), and transition-pair coverage [13],
in addition to mutation coverage. We found that
di�erent metrics are easily encoded into temporal
logic, with some limitations, and that interesting
theoretical comparisons between metrics are fa-
cilitated by formalizing them.

To scale these methods up to problems of use-
ful size and general nature, we successfully ap-
plied them to several di�erent examples. We
began with small, well-known examples such as
Cruise Control and Safety Injection. We also
modeled the operand stack of a Java virtual ma-
chine and several functional source code bench-
marks for unit testing, then generated good test
sets. Currently we are applying the method to a
part of a
ight guidance system from an aerospace
�rm and to a secure operating system add-on for
a Unix derivative.

Other Work

The earliest work we know of on generat-
ing tests using model checkers is when Callahan,
Schneider, and Easterbrook [6] mentioned that
counterexamples generated from SPIN, Mur�, or
SMV model checkers can be used as test cases.

Engels, Feijs, and Mauw [9] named some gen-
eral concepts, such as \test purposes" (some goals
to achieve with testing) and \never-claim" (sub-
mit the negation of what you want so the model
checker �nds a positive instance). They discussed
positive and negative testing. Positive testing
checks that the system does what it should, which
is appropriate for general system checks. Nega-
tive testing looks for a particular action the sys-
tem should not do. The disadvantage is that one
must specify the errors to look for, but it may be
useful in searching for particular errors.

Most recently Gargantini and Heitmeyer [10]
developed a requirements branch or case cover-
age test purpose using the SPIN or SMV model
checkers. Also conditions in requirements may be
elaborated in the test purposes to exercise bound-
ary conditions, for instance, x � y may be split
into x > y and x = y.

2. Research Questions

In January 2000 the group held an informal
workshop at NIST. Some 20 scientists, professors,
and students spent half a day sharing their views
on the work, listing programs we need, and de�n-
ing research topics and questions, such as:

1. What are the e�ects of semantically identi-
cal, but syntactically di�erent speci�cation
styles on test set quality?

2. How do we make tests observable?

3. How can we partition a huge model be-
tween light- and heavy-weight formal meth-
ods, then combine their results to get tests?

4. What are the advantages and disadvantages
for test generation or expressibility with
SMV and SPIN (CTL vs. LTL)?

5. How can (should) we trade o� number of
tests and coverage?

6. What are good (semi-)automatic abstrac-
tions from large, even in�nite descriptions for
test generation?

7. Can we use state machine mutations (failing
tests) to check systems for safety?

8. What are a good set of mutation operators,
e.g., for larger models.

9. How do duplicate mutants a�ect coverage
metrics? Do some sets of mutation operators
produce many or few duplicates?

3. Position Statement

� The use of speci�cations is an important
complement to code-based methods.

This is an old position, but we argue that re-
cent trends in software development and testing
make it more compelling. The traditional argu-
ment, which is still valid, is that without a speci-
�cation, we do not know to test for features which
are entirely missing from the source code. More
importantly, in acceptance tests of binary pro-
grams or conformance testing without a reference
implementation, there is no source code available
at all. During rapid development it may be help-
ful to write tests in parallel with or even preceding
coding; such a model is directly supported by the
use of "use-cases" in requirements analysis. Use-
cases are essentially system tests, and analyzing
use-cases with respect to speci�cation-based test
metrics is an important research area. Further,
there is a body of research that aims to intro-
duce formal methods into industrial development
by amortizing the cost of developing formal spec-
i�cations over other, traditionally expensive, life-
cycle phases, particularly testing. Model-checkers

are a relatively new, but powerful tool in achiev-
ing this objective.

� Test set recognition is as important as test
set generation.

There are basically two thrusts to this argu-
ment, one theoretical and the other practical.
The theoretical argument is that scienti�c com-
parisons between test methods bene�t greatly if
a test set produced by method A can be evaluated
directly and without bias with respect to method
B. Test methods that focus purely on test gener-
ation do not satisfy this objective. The practical
argument is that industry has an enormous in-
vestment in existing test sets, primarily in regres-
sion test sets, but also in new development arti-
facts such as use-cases from requirement analysis.
To retain the value of this investment, it is much
more helpful to critique the existing artifacts with
statements of the form, "Tests of type X and Y
are missing," rather than merely providing a new
test set that bears no relation to the existing ones.

� In spite of known limitations, our generic
framework for testing, with a test criterion
as a parameter and a model checker for an
engine, is a general approach that can han-
dle many interesting speci�cation-based test
criteria.

We de�ne a model whereby a test criterion is
paired with a speci�cation of a speci�c applica-
tion, and, with as much automation as possible,
test requirements speci�c to the application are
generated and satis�ed with speci�c tests, either
new or old. The key is the degree of automa-
tion. We believe that using a temporal logic to
express the test requirements and a model checker
to create and/or match test cases to test require-
ments is a general purpose approach suitable for
many speci�cation-based test methods. As de-
scribed above, this approach has been successful
for a variety of interesting test criteria. One in-
teresting aspect of this line of research has been
in discovering where the method falls short. The
signi�cant result so far is that any test require-
ment that places constraints on pairs of tests (as
opposed to individual tests) is not well handled by
a model checker, since counterexamples are typi-
cally generated one at a time. An example is the

MC/DC metric, popular in avionic applications.
In MC/DC, pairs of tests are required to di�er in
the value of exactly one condition. The research
question is how to work around this expressibility
constraint.

References

[1] Miron Abramovici, Melvin A. Breuer, and
Arthur D. Friedman. Digital System Testing
and Testable Design. IEEE Computer Soci-
ety Press, New York, N.Y., 1990.

[2] Paul Ammann and Paul E. Black. Abstract-
ing formal speci�cations to generate software
tests via model checking. In Proceedings
of the 18th Digital Avionics Systems Con-
ference (DASC99), volume 2, page 10.A.6.
IEEE, October 1999. Also NIST IR 6405.

[3] Paul E. Ammann and Paul E. Black. A
speci�cation-based coverage metric to eval-
uate test sets. In Proceedings of Fourth
IEEE International High-Assurance Systems
Engineering Symposium (HASE 99), pages
239{248. IEEE Computer Society, November
1999. Also NIST IR 6403.

[4] Paul E. Ammann, Paul E. Black, and
William Majurski. Using model checking to
generate tests from speci�cations. In Pro-
ceedings of the Second IEEE International
Conference on Formal Engineering Methods
(ICFEM'98), pages 46{54. IEEE Computer
Society, December 1998.

[5] Paul E. Black, Vadim Okun, and Yaacov
Yesha. Mutation operators for speci�ca-
tions. In 15th IEEE International Con-
ference on Automated Software Engineering
(ASE2000), October 2000. Submitted.

[6] John Callahan, Francis Schneider, and Steve
Easterbrook. Automated software testing
using model-checking. In Proceedings 1996
SPIN Workshop, Rutgers, NJ, August 1996.
Also WVU Technical Report #NASA-IVV-
96-022.

[7] J. J. Chilenski and S. P. Miller. Applica-
bility of modi�ed condition/decision cover-
age to software testing. Software Engineering
Journal, pages 193{200, September 1994.

[8] Tsun S. Chow. Testing software design mod-
eled by �nite-state machines. IEEE Transac-
tions on Software Engineering, SE-4(3):178{
187, May 1978.

[9] Andr�e Engels, Loe Feijs, and Sjouke Mauw.
Test generation for intelligent networks us-
ing model checking. In Ed Brinksma,
editor, Proceedings of the Third Interna-
tional Workshop on Tools and Algorithms
for the Construction and Analysis of Sys-
tems. (TACAS'97), volume 1217 of Lecture
Notes in Computer Science, pages 384{398.
Springer-Verlag, April 1997.

[10] Angelo Gargantini and Constance Heit-
meyer. Using model checking to gener-
ate tests from requirements speci�cations.
In Proceedings of the Joint 7th European
Software Engineering Conference and 7th
ACM SIGSOFT International Symposium
on Foundations of Software Engineering,
Toulouse, France, September 1999. To Ap-
pear.

[11] Jens Chr. Godskesen. Fault models
for embedded systems. In Proceedings
of CHARME'99, volume 1703 of Lecture
Notes in Computer Science. Springer-Verlag,
September 1999.

[12] D. Richard Kuhn. Fault classes and er-
ror detection in speci�cation based testing.
ACM Transactions on Software Engineering
Methodology, 8(4), October 1999.

[13] Je� O�utt, Yiwei Xiong, and Shaoying Liu.
Criteria for generating speci�cation-based
tests. In Proceedings of the Fifth IEEE
Fifth International Conference on Engineer-
ing of Complex Computer Systems (ICECCS
'99), pages 119{131, Las Vegas, NV, October
1999. IEEE Computer Society Press.

[14] Ronald W. Ritchey and Paul Ammann. Us-
ing model checking to analyze network vul-
nerabilities. In Proceedings 2000 IEEE Com-
puter Society Symposium on Security and
Privacy, Oakland, CA, May 2000. To Ap-
pear.

A Formally Founded
Componentware Testing Methodology

Klaus Bergner, Heiko L¨otzbeyer, Andreas Rausch
Marc Sihling, Alexander Vilbig

Institut für Informatik
Technische Universit¨at München

80290 Munich, Germany

Abstract

In this position paper we propose an overall methodology
for specification-based testing that is founded on a formal
model of component systems. We motivate the importance
of clearly defined description techniques and cover their
role with respect to techniques for the generation and vali-
dation of test cases.

1 Introduction

Traditionally, the role of formal development techniques in
system testing has been rather weak, partly due to the wrong
perception that the use of formal techniques can abolish the
need for testing. However, experience has shown that this
assumption does not hold in practice, as the effort for the
formal verification of large real systems is not manageable
in most cases. In this paper, we want to show that formal
techniques can and should be used not to abolish, but to
supplement the established testing methodologies.
Testing is an established discipline in software engineer-
ing, and there exists a variety of tools, techniques, and pro-
cess models in this area [Bei90, Gri92, Kit95]. Most infor-
mal methodologies rely on the creation of two completely
separated models: the design specification is used to de-
scribe the system’s functionality and architecture, while the
test specification characterizes the set of corresponding test
cases. At the one hand, this separation is necessary to un-
cover omissions and errors not only in the code of a sys-
tem, but also in its design specification. At the other hand,
much effort must be put into assuring the consistency of the
two models in order to make tests possible and meaning-
ful. Furthermore, the informal approach seems to reach its
limits with large distributed component systems. Here, the
absence of a global state makes it very difficult to specify
and perform reasonably complete, reproducable tests with-
out relying strongly on the system’s design specification.
Most specification-based methods try to resolve these dis-
advantages by generating code and test cases from a com-

mon formal design specification [Ulr98]. However, this ap-
proach gives up the decisive advantage of separating both
specifications—according to it, only specified properties of
the system can be tested.
In this position paper, we propose a more general approach:
Both system specification and test specification should be
based on a common formal model with clear definitions and
consistency conditions for design concepts as well as test-
ing concepts. Thus, developers can use formally founded
description techniques to specify the component system and
its test cases, both derived from the informal user require-
ments. Techniques and tools based on the formal model
allow to check the consistency of the test model with the de-
sign model, even if they both have been created more or less
independently. Furthermore, the approach offers the possi-
bility of generating test cases both from the design specifi-
cation as well as from the test specification.
In the following section, we first explain our vision of
specification-based testing and clarify the base concepts. In
Section 3, we then cover the role of formally founded de-
scription techniques, especially with respect to integration
testing. Section 4 deals with techniques and methods for the
use of such description techniques, focusing on the genera-
tion and validation of test cases. A short conclusion with an
outlook ends the paper.

2 Specification-Based Testing

In our view, a universal componentware development
methodology consists of four basic constituents (cf.
[BRSV98c]). Testing plays an important role with respect
to all of them:

System Model: The formal system model represents the
foundation of the methodology. It defines the es-
sential concepts of componentware, including math-
ematical definitions for the notion of a component,
an interface, and their behavior. Also contained are
definitions for testing concepts like test runs or test

results [BRS+ar].

Description Techiques: The formal system model is not
intended to be used for development directly, as us-
ing it requires experience with formal methods. For
developers, a set of intuitive graphical and textual de-
scription techniques is provided in order to describe
and specify the system and its components. This
pertains not only to design descriptions of the sys-
tem itself, but also to test case specifications and
the corresponding consistency conditions [HRR98,
BRSV98c].

Process Model: In order to apply the description tech-
niques in a methodical fashion, a development and
testing process has to be defined. In the small scale,
this pertains to single techniques like the transforma-
tion and refinement of diagrams or the generation of
test cases from design specifications. In the large
scale, the development and testing activities of devel-
opers, testers, and managers in different roles have to
be coordinated. This includes, for example, the defi-
nition of new roles like black box testers for commer-
cial components, or test case designers for distributed
integration tests [BRSV98a, BRSV98b, ABD+99].

Tools: At least, tools should support the creation of de-
scription techniques. Furthermore, they should be
able to generate part of the code, the documenta-
tion, and the test cases for the system. Beyond that,
many applications are possible, ranging from consis-
tency checks over simulation to development work-
flow support [HSSS96].

Based on former work on system models and formal de-
scription techniques [Bro95, KRB96, GKR96, BHH+97],
we have presented a formal componentware system model
in [BRS+ar], yet without explicit support for test concepts.
The base concepts of the model in its current form are as
follows:

� Instancesrepresent the individual operational units of
a component system that determine its overall behav-
ior. With componentware, this pertains to compo-
nent, interface, and connection instances, and their
various relations and properties. Each component
instance has a defined behavior, determining its in-
teraction history with respect to incoming and out-
going messages and to structural changes. As the
whole component system can be seen as a compo-
nent itself, the state and interaction history of whole
component systems can also be captured. This in-
cludes not only interactions between communicating
components, but also the structural behavior of the
system, understood as the changes to its connection
structure and the creation and deletion of instances at
runtime.

� Typesaddress disjoint subsets of interface resp. com-
ponent instances with similar properties. Each in-
stance is associated to exactly one type. Component
types are used to capture component instances with a
common behavior.

� Descriptionsare assigned to types in order to char-
acterize the behavior of their instances. Our notion
of a description is very wide: examples are interface
and component signatures, state transition diagrams,
extended event traces, or even source code. For each
description, there exists an interpretation which trans-
lates the notation into terms of the formal system
model. Each description can thus be represented by
a predicate which checks whether certain properties
of the system are fulfilled. Based on this clear, for-
mal understanding, consistency conditions between
the different description techniques can be defined.

Ideally, all descriptions should hold for all described in-
stances. In practice, however, only few descriptions may
be checked or enforced statically—apart from simple inter-
face signatures, this requires formally founded description
techniques with refinement and proof calculi that allow the
verification or generation of code. In practice, one mostly
has to resort to extensive testing.
In the context of the outlined methodology and the formal
system model, the testing approach proposed in the intro-
duction can now be presented in more detail. According
to our vision for an overall specification-based component-
ware testing methodology, developers elaborate two differ-
ent specifications based on the initial, informal customer
requirements: the formal system specification as well as the
formal test specification. Both are specified with intuitive
graphical and textual description techniques based on the
common formal system model. Developers are provided a
variety of techniques and tools, for example, for checking
the consistency between the two models, for generating test
cases from design and test descriptions, and for validating
the consistency of manually created test cases with the de-
sign descriptions (cf. Section 4).
Once all specifications have been elaborated to some extent,
testing itself can start. First, the initial system state specified
in the respective test case has to be established by creating
the corresponding component instances, setting their state,
and creating the connections between them. During the test
run, the external stimuli described in the test case have to
be executed on the component instances, and the resulting
communication and structural behavior must be checked for
compliance with the specification given in the test case. At
the end of the test run, the final state of each component
instance and the connection structure of the system has to
be compared with the desired state and connection structure
specified in the test case.
In the next section, we make some remarks about suitable
description techniques, especially with regard to the repre-

sentation of integration test case descriptions.

3 Description Techniques for Inte-
gration Testing

As told in the previous section, there exists a variety of dif-
ferent description techniques for various aspects of a sys-
tem. We want to base our work on the techniques provided
by the UML [Gro99], adapting and refining them when nec-
essary. With respect to integration testing, the following
kinds of graphical description techniques are especially in-
teresting:

� State-based descriptions, likestate transition dia-
gramsbased on input/output automata are well suited
to describe the state changes and the communication
behavior of components or (sub)systems.

� Structural description techniques, likeinstance dia-
gramscan be used to describe the connection struc-
ture of a component system.

� Interaction-based descriptions, likesequence dia-
grams, can be used to describe exemplary or desired
interaction sequences of the components in a system.

Based on these three graphical description techniques,test
case descriptionscan be composed. A typical test case may
contain:

� A specification of aninitial configuration, described
by an instance diagram and state diagrams for the par-
ticipating components.

� A specification of thetest case behavior, pertaining
to the communication of the considered components
with each other and with the test environment as well
as to their structural behavior. This specification con-
tains sequence diagrams or state transition diagrams
specifying the external stimuli that have to be initi-
ated by the test environment during the test run as
well as the expected output reactions of the test ob-
ject. With respect to the structural changes, instance
diagrams can be used to specify desired intermediate
configurations.

� A specification of the desiredterminal configuration,
similar to the specification of the initial configuration.

While this overall approach seems to be viable, there re-
main many open questions, for example, with respect to
the adequate syntactical representation of test cases, the ex-
act semantics of state transition diagrams and sequence di-
agrams, and the treatment of nondeterministic descriptions.
Another question arises with instance diagrams: like most
other structural description techniques, they can only cap-
ture snapshots of a system configuration at a certain time,

making them unsuitable for the description of the behavior
of large dynamic systems.
The following steps have to be done in order to develop
a toolkit of description techniques suitable for integration
testing:

1. Identification of requirements for description tech-
niques that are suited for the description of the be-
havior of a distributed component system.

2. Elaboration of a toolkit of formally founded descrip-
tion techniques.

3. Definition of integration test case descriptions based
on the toolkit of description techniques.

4 Methods and Techniques

The development of a successful test design is both an ex-
tensive and difficult task. On the one hand, a large amount
of test data has to be generated and managed. On the other
hand, each test case should be of high quality in order to
maximize the probability of finding remaining faults.
In the context of an overall integration testing methodology
based on graphical descriptions, at least the following test-
ing activities should be supported:

� Generation of test cases from design and test specifi-
cations.

� Consistency checking of manually created test cases
with design specifications.

� Automated execution of test cases and evaluation of
test results.

� Visualization of test results and animation of test runs
based on graphical descriptions.

� Analysis of test coverage and likelihood of error de-
tection.

� Management, organization, and documentation of
test results.

As the manual creation of test cases is a rather tedious
and error-prone process that requires much effort, we
want to focus on the automatic generation and valida-
tion of test cases. As has been shown, automating test
case generation can make testing easier and more effec-
tive [JPP+97]. Several techniques for automatic test case
generation from behavior descriptions like Mealy Machines
[Cho78, ADLU91, FvBK+91, Ura92], X-Machines [IH98],
VDM [DF93], or Z [Sad99, HNS97] have been developed
in the past. Recently, these techniques have been applied
to current industrial graphical description techniques like
ones provided by UML [Gro99]. Unfortunately, the new
approaches consider only single aspects of UML and the

testing process. For example, [KHBC99] presents a method
for generating test cases from UML state diagrams. As the
scope of the discussed method is clearly restricted to unit
testing, further work is is needed for integration testing.
Furthermore, other approaches used for test case genera-
tion and validation should be incorporated into the testing
process. We propose, for example, the use of the classifica-
tion tree method developed by Grimm [Gri95]. This method
is particularly well-suited for choosing concrete input data
by classifying the input data space. In addition, techniques
based on model checking can complement the testing pro-
cess by generating additional test cases from system prop-
erties [EFM97] or by validating test cases derived from a
test specification [NS93]. We believe that a powerful test-
ing methodology should provide a toolkit of techniques for
test case generation and validation.
Therefore, in parallel to the development of suitable de-
scription techniques (cf. Section 3), the following steps
have to be performed for the development of an adequate
testing methodology:

1. Analysis and evaluation of existing algorithms with
respect to the covered description techniques and the
special needs of integration testing.

2. Analysis and evaluation of complementary genera-
tion and validation techniques for integration testing.

3. Development of test case generation and validation
techniques for high-level graphical description tech-
niques.

4. Integration of selected techniques into a consistent
toolkit.

5 Conclusion and Outlook

The research agenda as given at the end of Sections 3 and
4 represents only the first step on the way to a practical
specification-based testing methodology. After the concep-
tual foundation has been developed, the techniques should
be validated on a small application example, for example,
in the context of a distributed CORBA system.
Further work is then needed to transfer the method into
practice. First, a suitable test infrastructure for the execu-
tion of test cases must be developed. In the following, tool
support for the generation of test cases from graphical de-
scription techniques has to be provided, for example, by
extending an existing CASE tool.

Acknowledgements

We thank Andreas W. Ulrich for enlightening discussions
and comments on earlier versions of this paper.

References

[ABD+99] Dirk Ansorge, Klaus Bergner, Bernd Deifel,
Nicholas Hawlitzky, Andreas Rausch, Marc
Sihling, Veronika Thurner, and Sascha Vo-
gel. Managing componentware development
– software reuse and the V-Modell process. In
Proceedings of CAiSE ’99, Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[ADLU91] A. V. Aho, A. T. Dahbura, D. Lee, and M. U.
Uyar. An optimization technique for pro-
tocol conformance test generation based on
UIO sequences and rural chinese postman
tours.IEEE Transactions on Communications,
39(11):1604–1615, 1991. An earlier version
with a same title appeared inProc. of the IFIP
WG 6.18th International Symposium on Pro-
tocol Specification, Testing, and Verification,
June 1988.

[Bei90] B. Beizer. Software Testing Techniques. Van
Nostrand Reinhold, New York, 2nd edition,
1990.

[BHH+97] R. Breu, U. Hinkel, C. Hofmann, C. Klein,
B. Paech, B. Rumpe, and V. Thurner. To-
wards a formalization of the unified model-
ing language. InProceedings of ECOOP’97.
Springer Verlag, LNCS, 1997.

[Bro95] Manfred Broy. Mathematical system models
as a basis of software engineering.Computer
Science Today, 1995.

[BRS+ar] Klaus Bergner, Andreas Rausch, Marc Sih-
ling, Alexander Vilbig, and Manfred Broy. A
formal model for componentware. In Murali
Sitaraman and Gary T. Leavens, editors,Foun-
dations of Component-Based Systems. Cam-
bridge University Press, 1999 (to appear).

[BRSV98a] Klaus Bergner, Andreas Rausch, Marc Sih-
ling, and Alexander Vilbig. A componentware
development methodology based on process
patterns. Technical Report I-9823, Technische
Universität München, Institut f¨ur Informatik,
1998.

[BRSV98b] Klaus Bergner, Andreas Rausch, Marc Sih-
ling, and Alexander Vilbig. A componentware
development methodology based on process
patterns. InPLOP‘98 Proceedings of the 5th
Annual Conference on the Pattern Languaes
of Programs. Robert Allerton Park and Con-
ference Center, 1998.

[BRSV98c] Klaus Bergner, Andreas Rausch, Marc Sih-
ling, and Alexander Vilbig. An integrated

view on componentware - concepts, descrip-
tion techniques, and development process. In
Roger Lee, editor,Software Engineering :
Proceedings of the IASTED Conference ‘98.
ACTA Press, Anaheim, 1998.

[Cho78] T. S. Chow. Testing Software Design Modeled
by Finite-State Machines.IEEE trans. on Soft-
ware Engineering, SE-4, 3:178–187, 1978.

[DF93] J. Dick and A. Faivre. Automating the Gen-
eration and Sequencing of Test Cases from
Model-Based Specifications. In J. C. P. Wood-
cock and P. G. Larsen, editors,FME’93:
Industrial-Strength Formal Methods, pages
268–284. Formal Methods Europe, Springer-
Verlag, April 1993. Lecture Notes in Com-
puter Science 670.

[EFM97] A. Engels, L. Feijs, and S. Mauw. Test gen-
eration for intelligent networks using model
checking.Lecture Notes in Computer Science,
1217:384–??, 1997.

[FvBK+91] S. Fujiwara, G. von Bochmann, F. Khendek,
M. Amalou, and A. Ghedamsi. Test Selection
Based on Finite-State Models.IEEE Trans-
actions on Software Engineering, 17(6):591–
603, June 1991.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard
Rumpe. Enhancing the SysLab system model
with state. Technical Report TUM-I9631,
Technische Universit¨at München, Institut f¨ur
Informatik, 1996.

[Gri92] K. Grimm. Systematisches Testen sicherheit-
srelevanter Software – Methoden, Verfahren
und Werkzeuge. Informatik zwischen Wis-
senschaft und Gesellschaft. Informatik Fach-
berichte 309, pages 66–107, 1992.

[Gri95] K. Grimm. Systematisches Testen von
Software - Eine neue Methode und eine
effektive Teststrategie. Technical report,
GMD-Forschungszentrum Informationstech-
nik GmbH, München/Wien, 1995.

[Gro99] UML Group. Unified Modeling Language.
Version 1.3, Rational Software Corporation,
1999.

[HNS97] S. Helke, T. Neustupny, and T. Santen. Au-
tomating test case generation from Z specifi-
cations with Isabelle.Lecture Notes in Com-
puter Science, 1212:52–??, 1997.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard
Rumpe. Modeling dynamic component inter-
faces. InProceedings of TOOLS’98, to ap-
pear, 1998.

[HSSS96] Franz Huber, Bernhard Sch¨atz, Alexander
Schmidt, and Katharina Spies. Autofocus -
a tool for distributed systems specification.
In Bengt Jonsson and Joachim Parrow, edi-
tors,Proceedings FTRTFT’96 - Formal Tech-
niques in Real-Time and Fault-Tolerant Sys-
tems, pages 467–470. LNCS 1135, Springer
Verlag, 1996.

[IH98] F. Ipate and M. Holcombe. A method for
defining and testing generalised machine spec-
ification. Int. Jour. Comp. Math., 68:197–219,
1998.

[JPP+97] L. J. Jagadeesan, A. Porter, C. Puchol, J. C.
Ramming, and L. G. Votta. Specification-
based Testing of Reactive Software: Tools and
Experiments. InProceedings of the Interna-
tional Conference on software Engineering,
1997.

[KHBC99] Y. G. Kim, H. S. Hong, D. H. Bae, and S. D.
Cha. Test cases generation from UML state
diagrams. InIEE Proceedings: Software,
146(4), 187-192, August 1999.

[Kit95] Edward Kit. Software Testing in the Real
World: Improving the Process. Addison Wes-
ley, Wokingham, 1995.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred
Broy. A stream-based mathematical model for
distributed information processing systems:
The SysLab system model. In J.-B. Stefani
E. Naijm, editor,FMOODS’96 Formal Meth-
ods for Open Object-based Distributed Sys-
tems, pages 323–338. ENST France Telecom,
1996.

[NS93] K. Naik and B. Sarikaya. Test case verifica-
tion by model checking.Formal Methods in
System Design, 2:277–321, 1993.

[Sad99] Sadegh Sadeghipour.Testing Cyclic Software
Components of Reactive Systems on the Basis
of Formal Specifications. Verlag Dr. Kovac,
1999.

[Ulr98] A. W. Ulrich. Testfallableitung und Testreal-
isierung in verteilten Systemen. Shaker Ver-
lag, Aachen, 1998.

[Ura92] H. Ural. Formal methods for test sequence
generation.Computer communications, 15(5),
June 1992.

Dynamic
Analysis

72

Java Model Checking

David Y.W. Park Ulrich Stern Jens U. Skakkebæk∗

David L. Dill

Computer Science Department
Stanford University
Stanford, CA 94305

{parkit,uli, jus, dill}@cs.stanford.edu

Abstract

This paper presents initial results in model checking
multi-threaded Java programs. Java programs are
translated into the SAL (Symbolic Analysis Labo-
ratory) intermediate language, which supports dy-
namic constructs such as object instantiations and
thread call stacks. The SAL model checker then ex-
haustively checks the program description for dead-
locks and assertion failures. Basic model check-
ing optimizations that help curb the state explo-
sion problem have been implemented. To deal with
large Java programs in practice, however, supple-
mentary program analysis tools must work in con-
junction with the model checker to make verifica-
tion manageable. The SAL language framework
provides a good starting point to interface new and
existing analysis methods with the model checker.

1 Introduction

The Java programming language is becoming in-
creasingly popular for writing multi-threaded ap-
plications. In particular, many Internet servers are
written in Java. Since Java has multi-threading
built in among other advantages, we expect it to
gain popularity in other areas such as embedded
systems where multi-threading is useful.
Developing multi-threaded programs is notori-
ously difficult, however. Subtle program errors can
result from unforeseen interactions among multi-
ple threads. In addition, these errors can be very
hard to reproduce since they often depend on the

∗Jens Skakkebæk is now at Adomo Inc., Cupertino, CA.

non-deterministic behavior of the scheduler and the
environment.
It is thus desirable to provide tools for software
developers that automatically detect errors due to
multi-threading. The tools should generate de-
tailed error traces to help the developer during
the debugging phase. We have developed such a
tool based on model checking. A model checker ex-
plores all reachable states of a system model, check-
ing whether they satisfy the user-provided correct-
ness specification including the absence of dead-
locks and assertion failures. Our tool verifies mod-
els described in the SAL (Symbolic Analysis Labo-
ratory) intermediate representation [10], that Java,
among other languages, can be translated down to.
Our research focus was in developing a frame-
work that is tailored towards software verifica-
tion. The SAL model checker supports dynam-
ically changing data structures, which are used,
for example, to model Java object creation and
call stacks. Popular traditional model checkers like
SPIN [12] or Murϕ [5] support only constant-size
data structures, although an extension of SPIN
called dSPIN [4] has been recently developed to
support dynamic data structures. Nonetheless, the
SAL model checker and the broader SAL language
framework was initially designed with software ver-
ification in mind, with the intention of providing a
system that can deal efficiently with the dynamic
aspects of software.
The main challenge in model checking is the state
explosion problem – the number of states in the
model is frequently so large that model checkers
exceed the available memory and/or the available
time. We have incorporated into our tool two tech-

niques to combat state explosion, a form of partial
order reduction and hash compaction, and are in
the process of implementing additional optimiza-
tions.
We also plan to integrate the SAL model checker
with program analysis tools that prepare large pro-
grams for efficient verification. Our model checker,
for instance, could serve as a back-end to the Ban-
dera [2] framework, giving us direct access to Ban-
dera’s slicing and abstraction tools that may turn
intractable verification models into tractable ones.
To allow for easy integration with Bandera, we
chose to use McGill’s Jimple [17], a three-address
representation of Java byte-code on which the Ban-
dera tools operate, as the input language of our
model checker.
Related works include the model checkers Java
PathFinder [11] and JCAT [3], both of which trans-
late Java into SPIN’s input language PROMELA.
Since SPIN does not support dynamic data struc-
tures, they have to allocate fixed-size heaps and
stacks. In addition, both tools translate directly
from Java source code rather than from byte-code.
Hence, they cannot be easily integrated into Ban-
dera nor verify programs where only the byte-code
is available. Moreover, the translation process
is more complicated since several advanced Java
features like exceptions have a simpler byte-code
representation than a source-code one. The Java
PathFinder group at NASA is in the process of ad-
dressing many of these issues with a new version of
their model checker.
Recently, there has been increasing interest in
verification tools that rely on the execution of ac-
tual code, eliminating the need to represent pro-
gram states and statements using a specialized de-
scription language. VeriSoft [9], for example, can
detect errors in C-style concurrent programs by
monitoring program execution and systematically
directing the scheduler. More recently, Bruening
has integrated a deterministic tester into the Rivet
Virtual Machine at MIT, that can detect deadlock
and assertion failures in Java programs [1]. The
tool relies on checkpointing system states in the vir-
tual machine to backtrack to previous states during
testing, but like VeriSoft, does not store states that
it has already visited. Hence, the disadvantage of
these tools is that the same state may be visited
multiple times. Consequently, large portions of the
state space may be explored redundantly, and non-

terminating programs (e.g., server-side processes
that loop indefinitely) become problematic. The
SAL model checker borrows ideas from VeriSoft-
like tools, but couples them with model checking
techniques to efficiently explore the state space.
Furthermore, our model checker is written in C++
with run-time efficiency in mind.

After giving a high-level overview of the model
checker in Section 2, details of the model checker
and the methods to increase the size of the models
that it can handle are explained in Section 3. Sec-
tion 4 describes the translation steps from Jimple
to an executable model checker. We give results
on several Java sample programs in Section 5, and
conclude in Section 6.

2 Overview of the Model

Checker

The SAL model checker explores all reachable
states of a given Java program. The two sources of
nondeterminism during this state exploration are
the choice of the next thread to run (scheduling)
and the input values from the environment. The
model checker currently detects deadlocks and as-
sertion violations.

The model checker executable is generated in a
sequence of translation steps that includes convert-
ing Jimple into the SAL intermediate language [10].
Using an intermediate representation has two ad-
vantages. First, languages other than Java can be
translated into the intermediate representation, re-
ducing the effort to develop a model checker for
each new language. Second, other analysis tools
that accept SAL as their input language can be
readily used to analyze Java.

SAL is a language for describing transition sys-
tems. The transition system is described with a set
of guarded commands, each of which consists of a
boolean condition on the current state and an asso-
ciated action that changes the current state into the
next state. SAL has two slightly different forms –
Level 1 and Level 0. While SAL Level 1 has explicit
guarded commands, SAL Level 0 folds the guarded
commands into one large transition function.

The SAL language has several features that make
it a good target for software model checkers. First,
SAL provides unbounded arrays whose sizes vary

dynamically. These arrays are used, for exam-
ple, to hold dynamically created Java objects and
threads. (A Java thread is an object of class
java.lang.Thread.) Second, SAL has abstract
data types that can be used as unions. A stack
frame, for example, is modeled as a record con-
taining, among other fields, a union that can hold
values for each possible method return type.
The model checker executable is generated in the
following steps as depicted in Figure 1.

• Java and Java byte-code. Either language
can be used as input language to our model
checker.

• Jimple. Generated by Java byte-code to Jim-
ple translator, which we extracted from the
Bandera framework.

• SAL Level 1. Generated by our Jimple to
SAL translator.

• SAL Level 0. Generated by a trivial transla-
tor from SAL Level 1.

• C++. Generated from SAL Level 0 by our
SAL to C++ translator. An executable of the
model checker is obtained by compiling this
C++ file together with the C++ model check-
ing core.

3 Model Checking SAL

The SAL model checker does an exhaustive search
of the state space by either a depth first or breadth
first traversal. Starting from the initial state, it
considers the set of rules whose guarding conditions
are enabled in the state. For each enabled rule, the
checker generates a successor state by executing the
associated action. The resulting state is stored in
a hash table so that it is not re-expanded if it is
encountered again. A brute force approach would
generate a new successor state for each enabled rule
that is fired, where a rule would roughly correspond
to one program statement. However, this results
in many unnecessary interleavings between state-
ments that are independent of one another.
As an initial step to combat state explosion,
we adopt the strategy of executing a sequence of
rules local to a thread atomically and interleaving
threads only when a global operation is performed.

In particular, the SAL model checker uses a tech-
nique called atomic blocks that Bruening developed
for the Rivet Deterministic Tester [1]. Secondly,
we use hash compaction to contain the otherwise
unmanageable memory usage necessitated by large
state spaces and state vectors. These model check-
ing techniques are described in the rest of this sec-
tion.

3.1 Atomic Blocks

The SAL model checker uses a form of partial or-
der reduction called atomic blocks [1], that is driven
by synchronization constructs and for which static
analysis is not required. The main idea is to execute
one thread as long as possible before generating a
new state, after which other threads may be sched-
uled. This is safe provided the operations of the
other threads can not possibly interfere with the
operations of the current thread being executed.
The algorithm differs from the usual VeriSoft-like
approach where a global state is defined by the ex-
ecution of a “visible” operation, i.e. an operation
on a shared variable. Because threads in Java share
the same address space, most variable accesses are
potentially visible operations and the interleaving
of threads may become too fine grained.
The atomic block method assumes that accesses
to shared variables are always protected by locks.
Although our tool does not currently enforce this, it
will be extended with techniques used in data race
detection tools for multi-threaded programs. Race
detection methods based on the happens-before re-
lation check that conflicting memory accesses from
different threads are ordered by synchronization
events [13] [6]. Another example is Eraser [15],
a dynamic race detection tool developed at DEC.
Eraser keeps track of what locks each thread owns
when it accesses a shared variable at run time.
When the set of locks one thread holds is disjoint
from the set of locks another thread owns when
they access a common variable, Eraser issues a
warning since the variable should have been pro-
tected by a common lock. Finally, static type-based
analysis has also been successful in detecting race
conditions in large Java programs [7].
Having stated the assumptions, a brief summary
of Bruening’s atomic block algorithm is given here.
At a state s, we generate its successors by taking
each enabled thread in turn and executing it until

-DYD

E\WH�FRGH

-LPSOH
(3-address code;
easier to analyze)

6$/

/HYHO �

6$/

/HYHO �

&��
(C++ representation

of SAL Level 0)

-DYD

3URJUDP

(UURU

7UDFH

&�� 0RGHO

&KHFNLQJ &RUH

0RGHO

&KHFNHU

Figure 1: Translation steps in the model checker

an unlock operation is performed or the thread dies.
Ignoring nested locking for the moment, note that
in Figure 2(a) the sequence of statements (rules)
between Unlock(A) and Lock(B) must only modify
variables local to the thread since we assume that
accesses to shared variables require the acquisition
of locks. Hence, it is unnecessary to interleave such
statements with statements from other threads.

Similarly, the statements within the synchro-
nized region delimited by Lock(B) and Unlock(B)
can be executed atomically since no other thread
can access B while the lock is held. Furthermore,
region X and region Y can actually be executed
in the same atomic block because any operation by
any other thread that may execute between the two
regions must be independent of region X. We only
have to consider schedules where such operations
occur before region X. Therefore, we can safely ex-
ecute each thread until an unlock is performed, at
which point we return the new state.

In the case of nested synchronization blocks, the
atomic block algorithm will span multiple locking
operations. In Figure 2(b), for instance, the atomic
block for T1 will begin with Lock(A) and end with
the first unlock, namely, Unlock(B). This may seem
as though we are neglecting certain schedules, e.g.,

the case in which thread T2 modifies B while T1
has locked A but not B. Yet, such schedules can
be ignored since we will consider the schedule in
which T2 modifies B before T1 locks A; in terms
of assertion checking, it does not matter whether
T2 accesses B before or after T1 accesses A since
A and B are independent.

3.2 Deadlock Detection

In general, a deadlock will be recognized by the
model checker when a state has no successors and
it is not a valid termination state. The only prob-
lem that atomic blocks pose is that certain dead-
locks can be missed. In the case illustrated in Fig-
ure 2(b), the particular schedule required to realize
the deadlock is never executed. As noted before,
the atomic block algorithm will never execute the
schedule in which T2 locks B immediately after T1
locks A but before T1 locks B. The lock-cycle dead-
lock that results from this schedule would have been
caught if atomic blocks were delineated by locking
as well as unlocking.

However, since larger atomic blocks result in
fewer unnecessary interleavings, and in turn fewer
states, we adopt Bruening’s approach in delineat-

synchronized(A) { | Lock(A) T1: T2:

... | ... ========= =========

} | Unlock(A) Lock(A) Lock(B)

|

... | region X... Lock(B) Lock(A)

|

synchronized(B) { | Lock(B) Unlock(B) Unlock(A)

... | region Y...

} | Unlock(B) Unlock(A) Unlock(B)

(a) (b)

Figure 2: (a) Synchronized regions and atomic blocks. (b) An example of nested locking.

ing atomic blocks by unlocks only and detecting
lock-cycle deadlocks by analyzing states for the ex-
istence of a cycle in the hold-wait relationship be-
tween threads. By keeping track of the most re-
cently released lock for each thread, we can look
for cycles where T1’s most recently released lock is
owned by T2, whose most recently released lock is
owned by T3, and so on until we get to some thread
Tn whose most recently released lock is owned by
T1.

This check is linear on the number of threads,
and is done only when a thread fails to obtain a
lock (i.e. potentially closes a hold-wait chain into a
cycle). Hence, the deadlock check introduces only
a marginal overhead in most cases. Furthermore,
a particular lock-cycle deadlock will always be de-
tected (unless other deadlocks are detected first)
since all schedules of atomic blocks are considered
and the atomic blocks stop at each unlock, effec-
tively considering all the locks each thread has ac-
cessed.

3.3 Implementation Specific Opti-
mizations

We have also implemented simple optimizations
that turn out to be critical in saving time and mem-
ory in model checking with atomic blocks. First, if
an atomic block consists of more than one rule, a
new state is instantiated once and each subsequent
rule in the atomic block updates values in the same
instantiation. This is permissible because interme-
diate states within the atomic block do not have to
be stored during model checking. Since state vec-

tors modeling dynamic structures like the thread
stack and heap can get very large, creating a copy
of the current state after each rule turned out to
be a bottleneck in execution time. In some cases,
the optimization led to an order of magnitude im-
provement in execution time.

Another source of run time overhead was the lin-
ear traversal over the set of rules required in deter-
mining which rules are enabled at each new state.
Since most of the rules map to individual state-
ments in a sequential process, the value of the pro-
gram counter in the current state is used to locate
in constant time the next enabled rule hashed on
the PC value.

Finally, atomic blocks are aborted when a thread
fails to acquire a lock and a successor state is not
generated. This significantly reduces the number
of schedules that need to be considered, reducing
the size of the explored state space while preserving
deadlocks and assertion failures. The informal jus-
tification is as follows. Suppose we have a thread
T1 holding lock A and a thread T2 that blocks
on the lock. The schedule in which T2 blocks on
lock A does not have to be considered since the
model checker will execute some schedule in which
T1 first releases lock A allowing T2 to obtain the
lock. Before T1 releases lock A, moreover, T1 can
not access the same shared variables that T2 ac-
cesses before T2 tries to lock A since this will lead
to a lock-cycle deadlock which our model checker
will detect. (Note that locks can not be unlocked
in the middle of an atomic block so T2 will be hold-
ing all of the locks on variables it accesses before
blocking on lock A.)

Therefore, even when T1 is executed first, re-
leasing lock A, the variables that T2 accesses be-
fore trying to lock A will not have been modified
by T1 and it would effectively be as if T1 was sig-
nalled and allowed to continue. In addition, abort-
ing atomic blocks when a thread blocks on a lock
can not cause any deadlocks to go undetected since
our lock-cycle deadlock checking functionality de-
tects all deadlocks as long as atomic blocks end at
each unlock and thread termination.

3.4 Hash Compaction

To reduce the memory requirements of the model
checker, we have implemented hash compaction [18,
16]. Hash compaction reduces the memory require-
ments of the state table, which stores all states
reached during verification and is used to decide
whether a newly reached state is new or has been
visited previously. Instead of storing the full state
descriptor in this table, hash compaction stores
only a (hash) signature. The memory savings come
at the price of a certain probability that the verifier
incorrectly claims that an erroneous protocol is cor-
rect. This probability, however, becomes negligibly
small when choosing the signature size appropri-
ately. Typical signature sizes are between 16 and
45 bits, resulting in memory savings of often more
than two orders of magnitude.

4 Translation Steps

4.1 Translating Jimple to SAL

The SAL language is used to model the Java (Jim-
ple) program as a state transition system. SAL has
state variables, nondeterministic inputs, an initial-
ization function, and a transition function that is a
collection of guarded commands (or rules).

The state of the Java program is modeled in SAL
using the following state variables: (1) each thread
contains a program counter (PC), stack (array of
frames), and stack pointer (CurrentFrame), etc.;
(2) each object contains a class id, the fields, a
counter for locking, etc. To select the next thread
to execute, we use a nondeterministic input (TID).

Each Jimple statement is translated into a
guarded command. For example, the Jimple state-
ment

i0 = 1

is translated into

(PC[TID] = label_0) -->

next(Stack)[TID]

[CurrentFrame].localVariables.i0 = 1;

next(PC)[TID] = label_1;

where (PC[TID] = label 0) is the guard condi-
tion, followed by the SAL statements that can be
executed if the condition is true.

The translator has to deal with all advanced fea-
tures of Java like inheritance, overriding, overload-
ing, dynamic method lookup, exception handling,
etc. For detailed descriptions of the semantics of
these features, refer to the Java Virtual Machine
Specification [14]. We believe that most of these
features are easier to deal with at the Jimple level
than at the Java source code level.

Exception handling, for example, is implemented
by four SAL rules and several SAL tables that
are generated at compile time. The first rule is
passed the location label of the statement that
throws the exception, and uses the method table
to look up the identifier of the method in which
the exception is thrown. The second rule searches
the exception table for this method for a catch
clause that handles the exception. A catch clause
handles an exception only if the class of its param-
eter is the class of the exception or a superclass of
the class of the exception. The subclass table is
used for this subclass relationship test. The third
and fourth rules deal with the case that during the
search no catch clause is found that handles the
exception. Typically, the third rule is executed,
returning from the method and re-throwing the ex-
ception. If the first stack frame of the thread had
been reached, however, a Java run-time error oc-
curred and this is signalled to the user.

4.2 Translating SAL to C++

The SAL description of the program is translated
into a C++ source file that is #included in the
model checking code, and the result is then com-
piled into an executable that outputs a trace if any
deadlock or assertion failure exists. The included
source file contains:

1. A C++ class with various accessors for each
distinct type in the SAL description. Un-
bounded arrays are used to model data struc-
tures such as the stack and heap, and are im-
portant in storing per-thread data given that
the actual number of threads can not be deter-
mined statically. Unbounded arrays are trans-
lated into dynamically resizing vectors where a
designated default value represents the infinite
sequence of array elements to the right of the
last non-default element in the array. When
an index n greater than the current maximum
index k is accessed, the vector is resized to size
n+ 1, letting elements at index k + 1 through
n − 1 be default values. Likewise, when the
last non-default element in the vector is set
back to a default value, the vector is resized to
size k + 1 where k is the index position of the
next right-most non-default element.

2. Functions simulating SAL guarded commands.
The guard function takes in the current
state and the current values for the non-
deterministic inputs and returns the next en-
abled rule to execute. The apply function then
executes the enabled rule and any subsequent
rules that fall under the same atomic block,
and returns the resulting successor state to
the model checking routines. Each successor
state is generated by systematically increment-
ing the non-deterministic input values which
includes the thread ID to schedule next.

5 Results

Table 1 gives the examples on which we tried the
model checker. The source code for the examples
is available at

http://verify.stanford.edu/uli/java/

The results we obtained for the examples are given
in Table 2. For each example, we ran the checker
under three different modes:

1. Noatomic: Atomic blocks turned off, interleav-
ing of threads fined grained as possible at the
level of individual rules.

2. LockUnlock: Atomic blocks delineated not
only by unlocking but by locking as well. Does

not require special lock-cycle deadlock detec-
tion method described in Section 3.

3. Unlock: Usual atomic blocks delineated by un-
locking only.

Note that we achieve larger state reductions for
the larger examples. In some cases, the reduction
achieved by atomic blocks is three orders of mag-
nitude. There is, however, many areas still in the
implementation of the model checker where the ex-
ecution time can be optimized.

Before hash compaction, moreover, the KSU
Pipe example could only enumerate 140,000 states
before running out of memory in the noatomic
mode. With hash compaction, both the KSU Pipe
and the ReaderWriter examples were able to be
completed in the noatomic mode.

6 Conclusion

Tools to verify software have become almost a ne-
cessity as both the complexity of software and the
extent of its use in critical systems are continu-
ally increasing. Given the usually intractable state
spaces of software programs, different kinds of ab-
stractions, optimizations, and “tricks” must be em-
ployed in concert to tackle the verification.

The SAL framework provides the means to eas-
ily integrate new and existing verification tech-
niques around a common intermediate representa-
tion. This paper gives preliminary results on ap-
plying this framework to model checking Java pro-
grams. Support for dynamic data structures in
SAL has made translating Java down to SAL direct
and straightforward. Atomic block reduction and
hash compaction demonstrate promising results in
dealing with large state spaces and state vectors.
We plan to extend the SAL model checker with ad-
ditional state space reduction techniques, including
symmetry reduction and a partial order reduction
method called persistent sets [8] that will eliminate
unnecessary interleavings even at the atomic block
level. Yet ultimately model checking optimizations
alone will not be sufficient to curb the state explo-
sion problem. The model checker must be supple-
mented with front-end slicing and abstraction tools
as well as other static program analysis tools. The
SAL framework has provided a good starting point

Table 1: Example programs
example description primitives # prim.

Bruening’s SplitSync two threads access shared
variable

synchronized 2

CS193k ReaderWriter two reader and two writer
threads

synchronized,
wait/notify

4

CS193k TurnDemo two threads synchronize using
a semaphore

synchronized,
wait/notify

6

NASA’s classic two threads communicate us-
ing events (deadlocks)

synchronized,
wait/notify

4

NASA’s ksu pipe 2-stage pipeline synchronized,
wait/notify

4

Table 2: Results on example programs
state

example algorithm states rules time reduction

Bruening’s SplitSync noatomic 1763 4090 1.0
lockunlock 57 77 53.1
unlock 37 43 95.1

CS193k ReaderWriter noatomic 261 838 1030 130 442s 1.0
lockunlock 848 2184 1.91s 309
unlock 528 1356 1.54s 496

CS193k TurnDemo noatomic 26 145 68 715 30.4s 1.0
lockunlock 385 617 2.57s 67.9
unlock 166 236 2.40s 158

NASA’s classic noatomic 45 924 118 047 46.6s 1.0
lockunlock 322 554 2.38s 143
unlock 143 234 2.11s 321

NASA’s ksu pipe noatomic 3990 883 14 022 723 6401s 1.0
lockunlock 28 357 92 334 51.5s 141
unlock 4991 15 762 11.8s 800

to research the ways that different analysis tools
interface and interact with each other.

References

[1] D. L. Bruening. Systematic testing of multi-
threaded Java programs. Master’s thesis, MIT,
1999.

[2] J. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,
C. S. Păsăreanu, Robby, and H. Zheng. Bandera:
Extracting finite-state models from Java source
code. In 22nd International Conference on Soft-
ware Engineering, 2000. To appear.

[3] C. Demartini, R. Iosif, and R. Sisto. A dead-
lock detection tool for concurrent Java programs.
Software - Practice and Experience, 29(7):577–603,
1999.

[4] C. Demartini, R. Iosif, and R. Sisto. dSPIN: A
dynamic extension of SPIN. In 6th International
SPIN Workshop on Practical Aspects of Model
Checking, 1999.

[5] D. L. Dill. The Murϕ verification system. In Com-
puter Aided Verification. 8th International Confer-
ence, pages 390–3, 1996.

[6] A. Dinning and E. Schonberg. Detected access
anomalies in programs with critical sections. In
ACM/ONR Workshop on Parallel and Distributed
Debugging, pages 85–96, 1991.

[7] C. Flanagan and S. N. Freund. Type-based race
detection for Java. In ACM Conference on Pro-
gramming Language Design and Implementation,
2000. To appear.

[8] P. Godefroid. Partial-order methods for the ver-
ification of concurrent systems - an approach to
the state-explosion problem. In Lecture Notes in
Computer Science, volume 1032, 1996.

[9] P. Godefroid. Model checking for programming
languages using VeriSoft. In 24th ACM Sym-
posium on Principles of Programming Languages,
pages 174–86, 1997.

[10] The SALGroup. The SAL Intermediate Language.
Technical report, UC Berkeley, SRI, Stanford Uni-
versity, 1999.

[11] K. Havelund and T. Pressburger. Model checking
Java programs using Java PathFinder. Interna-
tional Journal on Software Tools for Technology
Transfer. To appear.

[12] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279–
94, 1997.

[13] L. Lamport. Time, clock, and the ordering of
events in a distributed system. Communications
of the ACM, 21(7), 1978.

[14] T. Lindholm and F. Yellin. The Java Virtual Ma-
chine Specification. Addison-Wesley Publishing
Company, 2nd edition, 1999.

[15] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro,
and T. E. Anderson. Eraser: A dynamic data
race detector for multi-threaded programs. ACM
Transactions on Computer Systems, 15(4):391–
411, 1997.

[16] U. Stern. Algorithmic Techniques in Verification
by Explicit State Enumeration. PhD thesis, Tech-
nical University of Munich, 1997.

[17] R. Vallee-Rai and L. J. Hendren. Jimple: Sim-
plifying Java bytecode for analyses and transfor-
mations. Technical report, Sable Research Group,
McGill University, 1998.

[18] P. Wolper and D. Leroy. Reliable hashing without
collision detection. In Computer Aided Verifica-
tion. 5th International Conference, pages 59–70,
1993.

��� ����� �
	��
����������������� ����� �
�
� ��������� �!�#"$�
��%�&'�(�)*�,+��
-
./&��#	��,&0�����
�1��� 2
�,+3�

46587:9<;�=?>�@BA
C DFEHG�IKJLDFM6NPOQJKRTSUD:V�W8JKRXM
GYJLDBZPGQ[

\:R^]FD_JKN�Z�O8DBZ`RaSUD:bcR^IKD_O8R
Z`RXIedfRgC WHZ�G�SUN�h^]FDiV j8ILW8kPkPDilYm8[

n�oUn lXp6bcR^IKD_O8R8[HqrJsGY]FDtG
uwv p oUnXn#x^y m{z o^|Xx

D_R}dfD�~��wGYJK��NPOHGU��EHR^]FD_JKR���DFJ

4�@��}�}58��7�=*��@�>`��=
C D_EHGYILJKD_M6NPOQJKRTSUD:V W8JLR^M
G�JKDtZPGU[

\�R^]_DFJKN�Z`O8DBZ�R3SQD:b�RXIKDFO�R
Z`R^IsdfRgC WHZPG�SUNPhX]FD:V j8ILW8kPkPD�l�m8[

nPoQn l^pgb�RXIKDFO�R8[�q�JsGY]_DBG
uwv p oUn^nax^y m
z o z v
d�DBdfJLRU��EHR^]_DFJKR���D_J

���H�f�L�e�^�e�
�P���`�����`�}�r�} ���¡£¢:¤��e�`�:¥^����¦,§��`¨��c���f©���¦P¡��«ª�¡£ e¬��`��¨�¢�­��£��©�¡£®�¯
©��`��¢£ �°��£©��'©� P¨��±§ P¨����}©r¤���©r²P®«¦�³�´:µc¤Y®¶¢�­���­^���0¨����`�«¢:¬c®«¡�¤
�6�����«�`¡���¨·­��� `¥��«��§¸¡£¤���¡�°Y­�¡£
¦� e¬¹¤Y��¢�¦� `¡,ª���¡�¥^����¦
¢� `�«����¨ ©� �§ ­��«��¡����«ª`º�¦��`§����«ª'¡�¤��0®«¦P¡���³`����¡£®« �¦� e»H¼Pµ:¼
­��� `­P¯
���£¡Bª�¢�­^��©�®�½X©f��¡�®« `¦�¢c®«¦�¡£ � �¥�¾���©�¡c ��£®«��¦P¡���¨,¢� `°���©f�¿©f �¨Y�e´�À#�
­��£��¢���¦P¡ �T¦� `¡��`¡�®« �¦#¡£¤���¡�©��`¦�¥^�,°�¢���¨�»_ `�±¡£¤�®«¢�­�°��£­X `¢��eº
��¦Y¨��,¢�²��f¡�©r¤T Á»i¡£¤��'¬��eª,��»F ���§ ���}¢£��§��`¦�¡£®«©�¢:©��`¦T¥^����¢Â¯
¢�®«³`¦���¨#¡� ,¢£°�©r¤#¦� �¡£��¡�®« `¦}´±À#�'���«¢� ,�`¨�¨����f¢�¢'¡�¤���­��£ �¥��«��§
 e»^®¶¦Y©� ��£­X `����¡£®«¦�³0¡�¤���¢�­^��©�®�½X©��`¡�®« �¦�­Y��¡�¡£����¦�©f �¦�©��f­�¡H®«¦� �°Y�
¦� `¡���¡£®« �¦}´
Ã ÄPÅ}Æ�ÇX��È8�
ÉU®«¦�®«¡��r¯B¢�¡£��¡��0�`����®�½X©��`¡�®« �¦Êº�¡���§ ­X `�����}�« `³�®«©eºPË��e�e��´
Ì Í�Î �K�eÇQÈUÏH�e�KÐ�Ç Î
µc¤��`¦�²P¢�¡� �¡£¤������f©���¦P¡±�`¨��e��¦Y©���¢'®¶¦3¡� P `�H¢�°�­Y­X `��¡�ºH§ P¨����
©r¤���©r²P®«¦�³�©���¦
¦� e¬
¥^����­�­Y�¶®«��¨ ¬c®«¡�¤,®«¦�¡£�����f¢�¡�®«¦�³��£��¢�°Y�¶¡£¢0¡�
¡�¤Y�w�`����®�½X©f��¡�®« `¦� e»0¦� �¦�¯t¡£��®«�P®¶�`�H¢� Á»_¡B¬������,¢£ª�¢£¡���§ ¢�´gÑ� e¬�¯
���`����º��T¦P°�§�¥^���� Á»:­��� `¥��«��§�¢�¢£¡�®«�«��§ ��²`�±¡£¤���®«¦P¡���³`���`¡�®« �¦
 e»:§ P¨�����©Ò¤Y��©r²�®«¦�³3®«¦P¡� 3¡�¤�� ¢� e»F¡B¬��`����¨Y�������« `­�§���¦P¡'­��� Á¯
©���¢£¢:ÓP°�®«¡��0¢£�¶ e¬0´HÔ{½X�£¢�¡:�£����¢£ �¦,®«¢c¡�¤��`¡c¨�®«����©f¡c¡����`¦�¢��«�`¡�®« �¦
 e»8­��� `³��£��§�¢�¬c��®«¡£¡���¦,®«¦,¤�®«³�¤��«���`���}�«��¦�³`°���³`��¢c®«¦P¡� �»_ ��£§����
§� P¨��f�¶¢8°�¢£°����«�«ª�ªP®«���«¨�¢H�rÕ�©��f¢�¢�®«�`���«ª��¶�`��³`�c§� P¨����«¢Q¡£¤���¡?©���¦P¯
¦� `¡�¥^����­�­��£ ��`©Ò¤Y��¨±¬c®«¡£¤�§� P¨����`©r¤���©r²P®¶¦Y³�´��P `§��8¬� `��²0¤��`¢
���«�£����¨�ª ¥X�f��¦T¨Y �¦��0®«¦, ���¨Y���0¡� ����«�«���P®«��¡£�:¡�¤Y����¥^ e����§ ��¦P¯
¡�®« `¦���¨�­Y�� �¥Y�¶�f§Ö°Y¢�®«¦�³'�e����®« `°�¢H���f¨�°�©�¡£®¶ `¦,¡���©r¤�¦�®«ÓP°���¢c¢£°�©r¤
��¢?­��� `³����`§�¢��«®«©�®«¦�³0��¦�¨'��¥Y¢�¡��£��©�¡£®« �¦P¯B¥���¢£��¨�¢�­^��©�®«�`�¶®«×��`¡�®« �¦Ê´
ØB¦�®«¡�®«�`�¶�«ª`ºL¡£¤��:§ ��®«¦�»_ P©�°�¢H¬���¢H `¦±¡£¤��:�`¦����«ªP¢�®«¢8 e»}Ô:¨Y��­��� Á¯
³��£��§ ¢�º�¬c¤����£����¢�§� `���0����©f��¦P¡��«ª,Ë��e�e��­��£ �³��£��§ ¢��`���0¥X�f®¶¦Y³
©� `¦�¢�®«¨����£��¨��`¢c¬����«�HÙ«ÚeºXÛ�ºXÜKÝB´
ÔÞ¢��f©� �¦�¨{®¶§ ­X `��¡£��¦P¡�­��£ �¥��«��§ß¡£¤���¡�¢£¡�®«�«�c����§ ��®«¦�¢�®«¢�¡£¤��
»_�`©�¡�¡�¤��`¡�¡�¤��,¢£­X��©f®�½^©���¡£®¶ `¦
 e»0¢� Á»_¡B¬��`���,���fÓ�°Y®¶�£��§��f¦�¡£¢�®«¢
¦� `¡±ª`��¡�¬��f�¶�c®«¦P¡��f³����`¡���¨6®«¦�©f �§�§ �¦3��¦P�P®¶�£ �¦�§ ��¦P¡�¢'­��� Á¯
³��£��§ §����£¢:���£��°�¢£��¨�¡£ �´Tà, `��� ­�����©f®¶¢£���«ª�ºH­Y�� �¥Y�¶�f§�¢0���£®¶¢£�
¨�°��,¡£¤�� »_��©�¡�¡£¤���¡�¡£¤��,�«��¦�³`°���³`��¢±°Y¢���¨�»_ `��¬c��®«¡�®«¦�³3­��� Á¯
³��£��§ ¢H¨�®��á�f�H»_�£ �§�¡�¤Y �¢��0°�¢£��¨ »_ ��?����ÓP°�®«���f§���¦P¡�¢�¢�­^��©�®�½X©f�e¯
¡�®« `¦}ºX¡£¤����«��¡£¡�����¥X��®«¦�³â»_���c§ ��£�¿�`¥�¢�¡£���`©�¡0��¦�¨�¨Y®�ã�©f°��«¡c¡�
°�¦�¨Y����¢£¡���¦Y¨}´
µc¤�®«¢8­���­^������¨�¨Y����¢£¢���¢�¡�¤��c�«�`¡�¡��f�H­��� `¥��«��§ä¢£­X�f©�®�½X©����«�«ª'��¦�¨
 �°Y¡��«®«¦���¢H�0­^ �¢�¢£®«¥��«�c¢� ��«°�¡£®« �¦�¥��`¢���¨� `¦��¿¦Y �¡��`¡�®« �¦'¡� �¢�­^��©r¯
®�»_ª'­��� `­X���£¡�®«��¢�¬c®«¡�¤�®«¦�Ë��e�e��¢� �°Y��©��0©� P¨��eº�®«¦��£��¢�­^��©�¡�¡� �¡£¤��
��¥^ e����©f �¦�¢£®¶¨Y�����`¡�®« �¦�¢fºH®F´ �Á´��T¦� `¡��`¡�®« �¦3¡�¤��`¡±©f��¦#¥^��¬����«�

®«¦P¡���³`����¡£��¨3®¶¦
©� �¦P���f¦�¡£®« �¦��`�Q �¥�¾���©�¡� `��®«��¦P¡���¨3¢� Á»_¡B¬������'¨��r¯
���f�¶ `­�§��f¦�¡f´±�P°�©r¤#­��£ �­^����¡£®¶�f¢±©��`¦T¡£¤���¦#¥^�������£®�½X��¨#°�¢£®¶¦Y³
§� P¨��f�e©Ò¤Y��©r²�®«¦�³Y´æå�°��U����¢£�����£©r¤�»_ P©�°Y¢���¢8 �¦�Ë��e�e�c­��£ �³��£��§ ¢�º
¥�°�¡�¡�¤Y�:§��f¡�¤� P¨� `�¶ `³�ª�©f �°��«¨�¥^�0�rÕ�¡���¦Y¨���¨,¡� '�±�«�`��³���©��«��¢£¢
 e»8 �¥�¾r�f©�¡c ��£®¶�f¦�¡£��¨��«��¦Y³�°��`³���¢f´
µc¤��'­���­^���'®«¢¿ `��³`��¦�®«×���¨#�`¢�»_ ��«�« e¬c¢�ç��P��©�¡£®« �¦�Û ¨���¢£©���®«¥^��¢
¡�¤Y��¦� �¡£��¡�®« `¦#¬�� °�¢�� ¡� �¬c�£®¶¡£��­��£ �­^����¡£®«��¢�ºc�P��©�¡£®¶ `¦gè,��Õ�¯
­��«��®«¦�¢}¡£¤���®«�Q¢£��§��`¦P¡�®«©�¢}��¦Y¨±�P��©�¡£®« �¦'éc¨������«¢U¬c®¶¡£¤�¢�­^��©�®�½X©f�e¯
¡�®« `¦¿­Y��¡�¡£����¦Y¢�´iÉU®«¦��`�¶�«ª`ºL�P��©�¡£®« �¦�êc¨��£�e¬c¢�¢£ �§ �H©� �¦Y©��«°�¢�®« �¦Y¢
��¦Y¨���¦�¦Y �°�¦�©f��¢0»_°�¡£°�����¬� ��£²^´�µc¤��������`¨�����®«¢0��¢£¢�°�§ ��¨�¡£
¤��e�`�:��¥��`¢�®«©�»_��§ ®¶�«®�����®«¡Bª�¬c®«¡£¤�Ë��e�e�Y´
ë ì}í Ä��ÁÐ�î��e�Y�LÐFÇ Î�ï Ç^�L�Y�LÐFÇ Î
ð?�r»_ ��£��®«�«�¶°Y¢�¡��£��¡£®¶¦Y³�¡�¤��
¦� �¡£��¡�®« `¦#»_ `��¢�­^��©�®�»_ªP®«¦�³#­��� `­X�f�B¯
¡�®«��¢fºe®¶¡}®«¢}¬� ��£¡�¤0§��`²�®«¦�³?¢� �§ �8­������«®«§�®«¦��`��ª�©� �¦Y¢�®«¨����£��¡�®« `¦�¢�´
ÉU®«��¢�¡U e»X�`�«�_ºK®«¡Q®«¢Q®«§�­^ ��£¡��`¦�¡}¡£ :¨�®«¢£¡�®«¦�³�°Y®¶¢£¤�¥^��¡B¬��f��¦�¢� `°���©��
©� P¨����`¦�¨,¥�®«¦����£ª,©� P¨������f��®�½X©��`¡�®« �¦}´cµc¤��ñ»_ ��£§����c®«¦P�� `�¶�`��¢
���f��®�½X©��`¡�®« �¦� e»:­��£ �­^����¡£®¶�f¢���¢£¢� P©�®«��¡£��¨6¬c®«¡�¤6¡�¤��,­��£ �³`����§
¢� `°���©f�T©� P¨��3¬c®«¡�¤� `°�¡��£��ÓP°�®«��®«¦�³�¡�¤���©f �§�­Y®¶�«�`¡�®« �¦� e»�¡�¤��
­��£ �³��£��§
ºs¬c¤Y®¶�«�c¡£¤��:�«��¡£¡����?����³`����¨Y¢c�����£®�½^©���¡£®¶ `¦� e»}���«���f��¨�ª
©� `§�­�®«�«��¨�©f �¨Y�e´±ØB¦�¡£¤�®«¢:­��`­X�f�¿¬��'¨������8 `¦��«ªw¬c®«¡£¤�¢� `°���©��
©� P¨����`����®�½X©��`¡�®« �¦#¥^��©��`°�¢�� ®«¡�©���¦#¥^��®«¦P¡���³`����¡£��¨#®«¦P¡� ,¡�¤��
¢� Á»_¡B¬������?¨������f�¶ `­�§��f¦�¡}­Y�� P©���¢£¢H§� `���H���`¢�®«�«ª0��¦�¨0»F��©�®«�«®«¡���¡£��¢
¡�¤Y�:­��£ �³��£��§ §����U®¶¦ ¢�­^��©�®�»_ªP®«¦�³�©� `���£��©�¡�¦Y��¢�¢0���fÓ�°Y®¶�£��§��f¦�¡£¢�º
¢�®«¦�©f�¿¢£°�©r¤,����ÓP°�®«���f§���¦P¡�¢�©��`¦w¥^�0��¢£¢� P©�®«��¡£��¨,¨�®«����©�¡£�«ª�¬c®¶¡£¤
¡�¤Y�#¤�®«³�¤P¯B�«�������'­��£ �³��£��§ò���«��§ ��¦P¡�¢�§ ��¦�®«­�°��«�`¡���¨
¥Pªó¡�¤��
­��£ �³��£��§ §����fº�¢�°�©r¤,��¢c­Y��©r²e��³`��¢�º^©��«��¢�¢£��¢:�`¦�¨�§ ��¡�¤Y �¨Y¢�´
Ô:¦Y �¡�¤Y���8®¶¢£¢�°���¡� 0¥^��©f �¦�¢£®¶¨Y������¨�®«¢U¡�¤��`¡�®«¦�§ ��¦Pª:®«¦�¢£¡��`¦�©���¢
®«¡±®«¢�°�¢£�r»_°��0¡£ #�����£®�»Fª�­��£ �­^����¡£®¶�f¢���¢£¢� P©�®«��¡£��¨
¬c®«¡�¤6¢£®¶¦Y³��«�
©��«��¢£¢���¢� ��0­���©r²e�`³���¢0®«¦�¨���­^��¦�¨Y��¦P¡��«ªT Á»�¡�¤Y��¬��eª,¡�¤Y��ª�¬c®«�«�
��©f¡�°��`�¶�«ª ¥X�'°�¢��f¨}´�µc¤�®«¢:®«¢0��¢�­^��©�®«���«�«ª,¡�¤��'©��`¢���¬c¤���¦3¨�®«¢B¯
¡��£®«¥�°�¡��f¨g¢£ªP¢�¡��f§�¢����£��©� `¦�¢�®«¨����£��¨}º:¥^��©��`°�¢��
®¶¦6¢£°�©r¤
¢�ªP¢B¯
¡��f§�¢3¢����£�����6 �¥�¾���©�¡�¢6�`���
§ ��¨����e�e��®«�«��¥��«�#¡� �°Y¦�²P¦� e¬c¦
©��«®«��¦P¡�¢H¬c¤Y®¶©r¤�¬c®«�«�P������¦P¡£°����«�«ª�¥^�:¨����`���« �­^��¨��«��¡£���H �¦Ê´Hµc¤��
���f��®�½X©��`¡�®« �¦� Á»�¢��f�����f��¢�§ �eª�¥^��¨� �¦���¤��e�P®¶¦Y³� �¦Y�¶ª,�`¦���¥P¯
¢�¡£���`©�¡,¢�­^��©�®�½X©��`¡�®« �¦� Á»±¡�¤��3©��«®«��¦P¡,¥X��¤Y�e��®« `��´*µc¤��3¦�����¨
 e»}���f��®�»_ªP®«¦�³0­����£¡�®«���«�«ª�¢�­^��©�®�½X�f¨w¢£ªP¢�¡��f§�¢H¤��`¢��`�«�����`¨�ª±¥^����¦
���f©� �³`¦�®«×���¨�¥Pª� �¡£¤���������¢£�����£©r¤�����¢fºX�`¢H����­^ ��£¡���¨ ®«¦wÙôêfÝB´æÑ������
¡�¤Y®¶¢'¦����f¨
®«¢±�`¨�¨����f¢�¢��f¨
©� �¦Y¢�®«¨����£®¶¦Y³#¥X `¡�¤6­��� `­X�f��¡�®«��¢��£�r¯
�«��¡£��¨�¡£ #¡�¤��,¬c¤� `�¶�,­��£ �³`����§õ��¦�¨�­��� `­X���£¡�®«��¢,���f�¶�`¡���¨6¡£
¢�®«¦�³`�«��©��«��¢£¢���¢� Á»� �¥�¾���©�¡�¢f´�É� `�:¬c¤��`¡:©� `¦�©����£¦�¢±¡£¤��'�¶�`¡�¡£����º
¬��H���«¢� c¡£��²`�H®«¦�¡£ c©� �¦Y¢�®«¨����£��¡�®« `¦�¡�¤��æ»_��©�¡U¡�¤��`¡Q¡£¤��H¨����`���« �­P¯

ö�÷fø�ù8úÁûáú`ü�ýr÷�þ�ù�ú�ÿ��¶÷fø�ù£÷��������
	���úÁû_ù�
���ÿ�÷������£ù��«ø�����������÷��?üX÷��
ù�
�÷�÷�ø'ù�
�ú���ÿ£ú���ÿ���ö ö���ø���ÿ£ú��«÷��� 8ù��Y÷!��÷#"�÷��«ú��^÷�ÿHÿ£ú��«÷%$�
����¶þ��
þ�ú`ø�������ù��:úÁû&�«ö'���«÷�ö�÷�øPù��«ø��0ø�÷�
�þ#�������£÷��:ù�����ù�
������}üX÷�ö����Y÷
�%"%��������ü��¶÷�ù�ú'ú�ù���÷�ÿ����`ÿ�ù��¶÷#��$(�`ø���ù���÷�����÷fÿcÿ�ú��«÷%$�
����¶þ�� þ�ú�ø)�
�����£ù��,úeû*�����¶ø��+���«ÿ£÷�����,6÷�-�����ù��«ø���þ���������÷#��$�
��¶ù���ú��Yù�þ��`ÿ��«ø��
��ü^ú��Yù���ú%
�ù���÷�,'��ÿ�÷.�¶ö'���«÷�ö�÷�øPù�÷#�0/&1�ú`ø���÷#23�Y÷�øPù���,�$4�«ù�þ��`ø
ü^÷5���£÷rû6���}ù£ú7����")����÷cù��Y÷5��ÿ£ú��^÷�ÿ�ù��¶÷#�cù����`ù�þ��`ø�ü^÷:÷�-���ÿ£÷����£÷��
��ü^ú��Yù!�8���«ø����¶÷cþ#���������«øPù�ú�ù�
�ú8������ù��«ø�þfù!����ü���÷fù���$4��þ�þfú�ÿ����¶ø��
ù�ú�ù���÷��Xú��«ø�ùcúÁû9")�«÷�
:��ø���÷�ÿ�
����¶þ��,ù��Y÷�,��`ÿ�÷0û_ú`ÿ�ö;�����`ù�÷��0

<=�«øPù�÷�ÿÂû6��þf÷���ÿ�ú��X÷fÿ�ù��«÷��#$*
����«þ��>�`ÿ�÷�ÿ£÷�2)���«ÿ�÷�ö ÷�øPù�� ù����`ù
þ��`ø�ü^÷:÷�-���ÿ£÷����£÷��,ü),�ù���÷�þ�������������÷�ÿ��`ø��;�«ø)"�ú���"`÷�ú`ø���,
�«øPù�÷�ÿÂû6��þf÷¿÷#�¶÷fö�÷�øPù����Fö�÷�ù���ú)���«ø)"�úPþ��`ù��«ú�ø���	�/

<=�«ö����¶÷fö�÷�øPù��`ù��«úeø���ÿ�ú��X÷fÿ�ù��«÷��#$(
����«þ��;��ÿ£÷cÿ�÷�2)���«ÿ£÷�ö�÷�øPù��
ù�����ù'þ���ø#ü^÷,÷�-���ÿ�÷#����÷#�
ü),Tù���÷�þ��������8��÷�"�÷#�¶ú��X÷fÿ;��ø��
ö'�%,������£ú��«ø)"�ú���"`÷*�«ö����«÷�ö ÷�øPù���ù��«úeø���÷�ù��������8�_þ��������*��ù?�
ù£ÿ��«ü���ù£÷��@	A/

BDC ø����5��ÿ£÷����«ö��«ø���ÿ�,E�����£þ��������«ú�øF�^ú��«øPù�ÿ�÷#����ÿ�����ù���÷G���IH;�
þ����«ù�,;�`÷�ø�÷�ÿ�������,'û_ú���ø��;�¶øâû_ú�ÿ£ö�������J��«ø��K��úÁû_ù�
!�`ÿ�÷K��ÿ�ú��X÷�ÿ£ù��«÷��
÷�-���ÿ£÷����£÷����«ø*��ù�÷�ö'�Xú`ÿ������«ú����«þL���`ø���������÷%/NM�úK�����«÷�")����ù�÷8ù������
��ÿ£ú�ü��«÷�öO$9�`ø+�«ö��^ú�ÿ£ù���øPù*�£ù�÷��P����÷����Q�����'ü^÷�÷�ø6ö�����÷;�«ø)�
ù�ÿ£ú)����þ��«ø��'ù���÷0þ�ú`ø�þ�÷��Yùcúeû9���X÷fþ�� C þ���ù��«ú�øG����ù£ù�÷�ÿ£ø=R SUTV
����¶þ��
���7�3ö��������«ø���ü^÷�ù�
�÷�÷�øP��ÿ£ú��^÷�ÿ�ù��¶÷#��÷�-���ÿ£÷����£÷��W�«ø�ø���ù���ÿ����
����ø��������`÷7�`ø��#ù�÷fö��^ú�ÿ����L�«ú����¶þ�û_ú`ÿ�ö;������÷X/ZYcú%
�÷�"�÷fÿ�$H÷�"`÷�ø
��ûiø���ù��Yÿ���������ø��������`÷7�Yÿ�ú��^÷�ÿ£ù��«÷��;��ÿ£÷�÷�����,#ù�ú��Yø���÷�ÿ���ù��`ø��0$
���IH�þ����«ù��¶÷#��úPþ�þ���ÿ;
���÷fø�ù��Y÷�,=���%"�÷ ù�ú�ü^÷G���������«÷��=�«ø#ù���÷
þ�ú`ø�ù£÷�-�ù:úÁû9�8��ú��Yÿ�þ�÷'þ�ú)��÷���ÿ�ú���ÿ���ö�/
�K��ÿcø�ú`ù���ù��«ú�ø;������ü^÷�÷�øG��÷ C ø�÷��,ù���[3�«ø���ù���������ÿ�ú`ü��«÷�ö\�«øPù�ú
þ�ú`ø�������÷�ÿ���ù��¶ú`ø0/�]#÷
����ú��Yù:ù��Y÷7���X÷�þ#� C þ���ù��¶ú`øE����ù�ù£÷�ÿ�ø
þ�ú�ø)�
þ�÷��Yù���ø��0$)�«ø��£÷�þ�ù��«ú`ø�S8
�÷K������þ��������7�^ú������«ü��«÷5
��%,'ù�ú8�¶øPù£÷��
��ÿ���ù£÷
���X÷fþ�� C þ���ù��«ú�ø����`ù�ù£÷�ÿ�ø��K�«ø�ù£ú±ú���ÿcø�ú`ù���ù��«ú�ø0/
B �����«ÿ�÷�����,'÷�-��������«ø�÷��0$)
�÷����%"�÷cþ���ú���÷�ø ù�ú*�«ø��£÷�ÿ�ù�^)M5^âû_ú�ÿ?�
ö;������÷.���«ÿ�÷�þ�ù���,E�«øPù�ú�ù���÷;��ú���ÿ�þf÷�þ�ú)��÷ úeûcù���÷'��ÿ�ú���ÿ��`ö_���
���^÷�þ������5��øYø�ú�ù���ù��«ú`øgþfú�ö�ö ÷�øPù��#/`�K��ÿ þ@�Yú��«þ�÷G
!���;��ÿ���"`÷�ø
�����£ú#ü3,6ù���÷TøY÷�÷��
ù£ú+���£÷Tù���÷E����ö ÷Z�£ú���ÿ£þ�÷ C �«÷��«øgü^ú�ù��
þ�ú`ö���������ù��¶ú`ø;��ø��O"�÷�ÿ�� C þ���ù��¶ú`ø0$0
��«ù���ú���ù�û6��ÿ£ù���÷�ÿ0ö ú3��� C þ��%�
ù��«ú`ø���/baBø0ù������V
��%,�$c��ÿ£ú��^÷�ÿ�ù��¶÷#�HüX÷fþ�ú�ö ÷9�«øPù�÷#��ÿ����)����ÿ£ùQúeû�ù���÷
��ú���ÿ�þf÷�þ�ú)��÷�úÁû!����þ�[%����÷��*�`ø��3þ��������£÷���$L�`ø��d��ÿ�÷'ø��`ù���ÿ�������,
þ��`ÿ�ÿ��«÷��P
��«ù��=�«ù#/fe&��þ���ú`ø�÷�úÁû¿ù��Y÷�û_ú����«ú%
��«ø��'��ø�ø�ú`ù��`ù��«ú�ø
û_ú`ÿ�ö���þ��`øwü^÷�����÷#��ù�ú;���X÷�þ#��ûg,��;��ÿ£ú��^÷�ÿ�ù�,4

h3i)jQk�l�mXk0nol)p)q�r�sck0n)t)u%v(u)t�w%p4u�mXx>i)h
h3h)jQk�l�mXk0nol)p)q�r�sck0n)t)u%v(u)t�w%p4u�mXx

B ��ÿ£ú��^÷�ÿ�ù�,G�����cù���÷�û_ú����«ú%
��«ø���û_ú`ÿ�ö����(��,Pø�ù��%-0
k�l�m%k0n%l)p)qyr�sUk0n)t3u%v4u)tow�p4u�m%x\z)z�{
|3}�~�|)�)}3�)�P�)�)�3� {D���%�(wXx�p4uov4u)n%l)�`��p��)r�vym�l��)�(�3w

�X�(w%x�p4u%v4u3n%lDz)z�{
�@� ~�})�)�3���g�)�4�X�����4�G� n3t��)w�l�w�p4u�mXx0s��%��k�l4n � u)t�w�p(n � �

M���÷Q�����^÷�ÿ��Bþ����£÷F��,Pö�ü^ú����G��÷�ø�ú`ù�÷6ù�÷fÿ�ö��«ø�������$*
������«÷#ù���÷
�«ú%
�÷fÿ��Bþ����£÷�ú�ø�÷#�Z�`ÿ�÷�øYú�ø)�Bù�÷�ÿ£ö��«ø�������,Pö�üXú�����/�M���÷���,�ö��
ü^ú����
÷�ø�þ#�¶ú���÷����«ø���2)���`ÿ�÷�ü�ÿ���þ�÷����`ÿ�÷·ú���ù��¶ú`ø����g/ M���÷
� n)tX�)w�l�w�p(u�mXx0s ��,Pö�üXú��;�¶øPù£ÿ�ú)����þ�÷#�>�·ø)��ö�üX÷fÿ�úeû�"%�`ÿ��I�
��ü��¶÷#��ù����`ù�ÿ���ø���÷,ú%"�÷�ÿ ù���÷G2)���`ø�ù�� C þ���ù��«ú�øP��ú�ö'���«ø0$8ù���[��
�«ø��0ù���÷�þ����������«þ����0���%"%��û_ú�ÿ£öÖúÁûV�*"%��ÿ�����ü��«÷���÷�þ#���`ÿ��`ù��«ú�ø;������ù#/
M���÷ k�l4n � u)t�w�p(n ��,Pö�ü^ú��4��÷�ø�ú`ù�÷��K�;���%"%�'üXúPú��¶÷#��ø,÷�-���ÿ�÷#���
���«ú`øW���£÷��äù£ú
ÿ�÷#��ù�ÿ��«þ�ù#ù���÷=2)���`øPù�� C þ��`ù��«ú�ø���ú`ö����¶ø�/ B ø��p�� v�m�l��)���)w ����ú`ü�ù����«ø�÷��6û_ÿ£ú�ö���ø),6ø)��ö�üX÷fÿ�úeû7�`ù�ú�ö'�«þ
��ÿ£ú��^ú����«ù��¶ú`ø��'þ�ú�ø�øY÷�þ�ù�÷#�F
��«ù���ù���÷��£ù��`ø�����ÿ��F^)M5^
ú��X÷fÿ��%�
ù�ú`ÿ��#/*M���÷���÷;�«ø�þ#������÷±ù���÷'ù�÷�ö'�Xú`ÿ����8ú��X÷�ÿ���ù£ú�ÿ��8���3��$ ��� $4�0$m 	�$�ù���÷���ù��`ø����`ÿ��,üXúPú��¶÷#��ø,ú��^÷�ÿ��`ù�ú`ÿ�����ø��wù���÷��«ö������«þ���ù��«ú�ø
ú��^÷�ÿ���ù�ú`ÿ �)�)	�/�M��Y÷Z^)M5^6þfú�ö��^ú����«ù��«ú�ø�ÿ����«÷��8��������,d��÷�ÿ£÷%$
���Yþ@�,ù�����ù#$���û | ��ø���¡8�`ÿ�÷�û_ú�ÿ£ö;������÷%$`ù���÷�ø��)� | $ �¢� | �`ø�� |
�£¡â÷�ù�þ%/���ÿ£÷
������ú�û_ú�ÿ£ö;������÷%/
¤ ÷�øY÷�ÿ�������,�$%
�÷�þ�ú�ø�������÷�ÿHù�����ù���ÿ�ú��X÷�ÿ£ù��«÷��L�`ø�ø�ú`ù���ù£÷��;
��«ù����«ø
ù��Y÷;��ú��Yÿ�þ�÷,þ�ú)��÷ úeû�����ÿ�ú���ÿ���ö���ÿ£÷;����ü^ú�ÿ����«ø���ù£÷���ù£ú�ù���÷
���`ö�÷d��þ�ú����«ø��
ÿ����«÷��E������ø),óú�ù���÷�ÿd���`ø���������÷3þ�ú`ø���ù£ÿ���þ�ù#/
M����`ù*����$b����ÿ�ú��X÷fÿ�ù�,#þ��`ø#ú�ø���,�ÿ£÷rû_÷�ÿ�ù£ú�ù���÷�÷fø�ù��«ù��«÷��'ù����`ù
��ÿ£÷*")�����«ü��«÷��¶øG�«ù���ö�ú���ùc÷�ø�þ#�¶ú����«ø��'��þ�ú��X÷%/ B ù:ù���÷'ö�ú�ö�÷fø�ù

�÷���ÿ�÷cù���[)�«ø����«ø�ù£ú0þ�ú�ø�������÷�ÿ��`ù��«ú�ø�ù�
�ú�[)�¶ø����Húeû0��þfú��^÷% Hù���÷
���`þ@[%����÷;�`ø���ù���÷�þ��������;��þfú��^÷%/+M���÷'����þ�[%���`÷��£þ�ú��^÷,þ�ú�ø)�
ù����«ø��*�����Hþ#�������£÷��;��ø��=�«øPù�÷fÿBû6�`þ�÷��;��÷�þ#���`ÿ�÷��Q�«ø#ù���÷ þ���ÿ�ÿ£÷�øPù
���`þ@[%����÷���ø�� ù���÷cú`ø�÷�����÷�þ����`ÿ�÷��G����ü����«þ��«ø'ú�ù��Y÷�ÿ!����þ�[%���`÷���/
M���÷�þ��������8��þ�ú��X÷ þ�ú�øPù����«ø��*����� C ÷�������$Hö ÷�ù���ú)���.��ø��=�«ø�ø�÷fÿ
þ���������÷�����÷fþ�����ÿ�÷#�=�¶ø
ù���÷�þ��Yÿ�ÿ�÷fø�ù�þ��������0ú`ÿ
�«øPù�÷fÿBû6�`þ�÷%$V���¶ú`ø��

��«ù��6ù��Y÷Tú`ø�÷��G��÷�þ����`ÿ�÷����«ø6ú�ù���÷�ÿ,þ���������÷����`ø��F���`þ�[%����÷#�
ù�����ùb��ÿ£÷5")�����«ü��«÷!�«ø'ù���÷cþ#��ÿ�ÿ£÷�øPùcþ��������#/!¥8ÿ�ú��X÷fÿ�ù��«÷�����÷�þ#���`ÿ�÷��
�«ø�������÷.�Z����þ�[%���`÷7�£þ�ú��^÷�ü���ù0ú��Yù�������÷8��ø),�þ#����������þfú��^÷���ÿ£÷
��÷�øYú�ù�÷#�Z�«øG
����`ù�û_ú����«ú%
��L��������þ�[%���`÷5��ÿ£ú��^÷�ÿ�ù��¶÷#��/5¥8ÿ�ú��X÷fÿ��
ù��«÷��N��÷�þ����`ÿ�÷��8�«ø�������÷b�:þ#�������N��þ�ú��X÷�ü���ùUú���ù�������÷L�`ø3,0ö ÷�ù���ú)�
��÷�þ#���`ÿ��`ù��«ú�ø'��ÿ�÷���÷fø�ú�ù£÷������cþ#����������ÿ£ú��^÷�ÿ�ù��«÷���/
M���÷d�«ø�ù£÷�ÿ��Yÿ�÷�ù���ù��«ú`ø�úÁû7����þ�[%����÷��`ø���þ#�������G��ÿ£ú��^÷�ÿ�ù��¶÷#�����
2)���«ù�÷;���I¦}÷�ÿ�÷fø�ù#$�ü^÷�þ�������÷G�����`þ�[%����÷'��ÿ�ú��X÷fÿ�ù�,=���*��øP^)M5^
û_ú`ÿ�ö;�����'ÿ�÷�����ù£÷��3ù�ú�ù���÷�÷�"`ú�����ù��«ú`øwúÁû�ù��Y÷;���«ú�ü����V��ÿ£ú��`ÿ���ö
��ù���ù£÷%$(
���÷fÿ�÷����5��þ��������5��ÿ£ú��^÷�ÿ�ù�,G���������«÷���ù£ú�ù���÷�÷�"�ú����Yù��«ú�ø
úeû8ù���÷��£ù���ù£÷�úeû8÷���þ����«ø��£ù��`ø�þ�÷0úeûHù��Y÷¿þ#���������«ùcÿ�÷�û_÷�ÿ���ù�ú�/
^}÷fù
���¿øYú%
���÷ C ø�÷'ù��Y÷;��ù�ú`ö��«þ5�Yÿ�ú��^ú����«ù��«ú�ø��0ù�����ù0þ��`ø�üX÷
���£÷��Tù£ú�ü��������,ù��Y÷7"%�`ÿ��«ú�����[)�«ø�����úeû§^yM5^d��ÿ�ú��X÷�ÿ£ù��«÷��#/7¨�ú`ÿ
���`þ@[%����÷;��ÿ£ú��^÷�ÿ�ù��«÷���$���ù�ú`ö��«þ8��ÿ�ú��Xú����«ù��«ú�ø���ù���[�÷�ù���÷�ûFú�ÿ�ö
úeûQü^úPú��«÷��`ø�÷�-���ÿ£÷������¶ú`ø����«ø)"�ú���")�«ø�����ù���ù��«þ���ù£ù�ÿ��¶ü���ù�÷��cúÁûQù���÷
���`þ@[%����÷�þ���������÷#��/F¨�ú`ÿ±þ��������8��ÿ�ú��X÷�ÿ£ù��«÷��'�¶ø���ù�÷#���0$�
�÷ þ�ú�ø)�
������÷fÿ;��÷����`ÿ��`ù�÷���,P�«ø�ù£÷�ÿBûg��þ�÷G��ø��>�«ö'���«÷�ö�÷�øPù���ù���ú�ød��ÿ�ú��X÷fÿ��
ù��«÷��#/
M���÷G���^÷�þ�� C þ#��ù��«ú`ø
úeû*�«øPù�÷�ÿÂû6��þ�÷O��ÿ�ú��X÷�ÿ£ù��«÷�� ö���[`÷��8����÷3úeû
ù��Y÷cû_ú����«ú%
��«ø���ù�
�ú*�`ù�ú`ö��«þ!�Yÿ�ú��^ú����«ù��«ú�ø��?ÿ�÷�����ù£÷���ù£ú±ù���÷:úPþ��
þ���ÿ£ÿ�÷�øYþ�÷±úÁû�ö ÷�ù���ú)� þ������0��ø��wÿ£÷�ù��Yÿ�ø�÷�"`÷�øPù��#

< t�w)�)��uUx�©b���ª��«Ew�l)©��)�¬nUx�p�r)��u)s%p)� �

< l4n%p��yl�x0s0���ª��«Ew�l)©��)�¬nUx�p�r)��u)s%p)�\��«G­)� �

���÷�ÿ£÷*��2)���`ÿ�÷0ü�ÿ���þ�[�÷�ù��5�«ø����«þ��`ù�÷0ú��Yù��«ú�ø���� C ÷�������/

®b¯�°�±�²�³�´�µ�°P¶�·3¸)¸�¹Uº�»9¼�½�¾�¿�·�À)»�Á)½0ÂUº�ÃyÄ)¸�¹)Å%Ã3Æ0ÇG²�È�µ�¯�É�°=²�Ê
´�Ë�Ë0Ì�Í�Î�°�³�µKÈ�µ�´�µ�°�ÈKÏ�Ð�°�¯�°*È�Ì�Ñ�°5³#´�Ë�Ë0µ�Ì;Ñ'°�µ�Ð�Ì)±'ÑªÏ�²�µ�Ð'´�³�Ò
µ�É�´�Ë5´�¯�Ó�É�Ñ�°�Ê)µ�È�·�À)»�Á)½0Âcº�Ã�Ä)¸�¹3Å%Ãd²�È�Í4°�²�Ê�Ó=°�Ô�°�³�É�µ�°�±0Õ\Ög×
Ñ�°#µ�Ð�Ì)±GÑ�±�Ì)°�È�Ê�Ì�µKÐ�´%Ø�°8´�¯�Ó�É�Ñ'°�Ê)µ�È#Ù(µ�Ð�°7´�¯�Ó�É�Ñ�°�Ê)µ�Ë�²�È�µ
²�È;Ø�Ì�²�±�Õ>Ö�ÊQÚ�¯�´�³�µ�²�³�°%ÙKµ�Ð�²�È;´�µ�Ì�Ñ'²�³;Ú�¯�Ì�Ú4Ì�È�²�µ�²�Ì�ÊQÍ(°�³#Ì�Ñ�°#È
µ�¯�É�°�²�Ê�µ�Ð�°
°#Ø�Ì�Ë�É�µ�²�Ì�Ê;Ì%×V´8³�Ë�´�È�È�²�Ê�È�µ�´�Ê�³�°�Ï�Ð�°#Ê�°�Ø�°#¯�´7³�´�Ë�Ë
µ�Ì;Ñ'°�µ�Ð�Ì3±GÑDÏ�²�µ�ÐG´�³�µ�É�´�ËN´�¯�Ó�É�Ñ'°�Ê)µ�È5·�À)»�Á)½0ÂUº�ÃyÄ)¸�¹)Å%Ã7²�È
²�È�È�É�°�±PÌ�Ê=µ�Ð�´�µ8²�Ê�È�µ�´�Ê�³�°XÙ!´�Ê�±+²�µ*¯�°#Ñ�´�²�Ê�È.µ�¯�É�°ZÉ�Ê3µ�²�Ë!µ�Ð�°
³�Ì�¯�¯�°#È�Ú4Ì�Ê�±�²�Ê�Ó8Ñ�°#µ�Ð�Ì)±8°�Ô�°�³�É�µ�²�Ì�Ê�µ�°�¯�Ñ'²�Ê�´�µ�°#È�ÕLÛ�×V³#Ì�É�¯�È�°%Ù
²�Ê�´*³#Ì�Ê�³�É�¯�¯�°#Ê3µK°�Ê)Ø)²�¯�Ì�Ê�Ñ'°�Ê)µL²�µL²�È!Ú4Ì�È�È�²�Í�Ë�°5µ�Ì7Ð�´%Ø�°5µ�²�Ñ�°�Ò
Ì%Ø�°#¯�Ë�´�Ú�Ú�²�Ê�Ó5°�Ô�°�³�É�µ�²�Ì�Ê�ÈbÌX×¬ÑOÙc²�Ê*Ï�Ð�²�³�Ð7³#´�È�°�µ�Ð�°�Ú�¯�°�±�²�³#´�µ�°
¯�°#Ñ�´�²�Ê�Èbµ�¯�É�°KÉ�Ê)µ�²�Ë�µ�Ð�°�³�É�¯�¯�°�Ê)µ�Ê)É�Ñ;Í(°#¯9ÌX×V³�Ì�Ê�³�É�¯�¯�°�Ê)µ!°AÔ3Ò
°�³�É�µ�²�Ì�Ê�ÈGÌX×7ÑÜÏ�²�µ�ÐF´�³�µ�É�´�Ë�´�¯�Ó�É�Ñ�°#Ê3µ�È�·�À3»�Á)½0ÂUºyÃ�Ä)¸�¹)ÅoÃ
¯�°#±�É�³�°�È�µ�Ì�Ý)Õ
®b¯�°�±�²�³�´�µ�°ªÀ4Â%Ã�Á�À�º0Å0¼�½�¾X¿d·�À)»�Á)½0ÂUº�ÃyÄ)¸�¹)Å%Ã3ÆÞ¾�¿Gß)Æ¬ÇD²�È
µ�¯�É�°=²�ÊW´P³�°#¯�µ�´�²�Ê�Ì�Í�Î�°�³#µ�È�µ�´�µ�°=Ú�¯�Ì%Ø)²�±�°�±:µ�Ð�´�µ�µ�Ð�°=Ë�´�È�µ
²�Ê)µ�°�¯?×6´�³�°'°�Ø�°#Ê3µ8Ì)³�³�É�¯�¯�°�±à²�Ê=µ�Ð�°�Ì�Í�Î�°�³�µ;²�È*µ�Ð�°�¯�°�µ�É�¯�ÊPÌ%×
Ø%´�Ë�É�°�Ô;×g¯�Ì�Ñá´8³�´�Ë�Ë4µ�Ì8Ñ�°�µ�Ð�Ì)±;Ñ\Ï�²�µ�Ð'´�³�µ�É�´�Ë4´�¯�Ó�É�Ñ'°�Ê)µ�È
·�À)»�Á)½0ÂUº�ÃyÄ)¸�¹)Å%Ã(Õ4â5ÈbÏ�²�µ�Ð8µ�Ð�°�Ú�¯�°�Ø)²�Ì�É�ÈbÚ�¯�°#±�²�³�´�µ�°%Ù3µ�Ð�°�´�¯?Ò
Ó�É�Ñ�°�Ê)µbË�²�È�µ!´�Ê�±;µ�Ð�°5¯�°#µ�É�¯�ÊZØ%´�Ë�É�°�³�´�Ê'Í(°KÑ�²�È�È�²�Ê�Ó8ã6°%ÕäÓ�Õ�Ù�²I×
Ñ\±�Ì)°�È�Ê�Ì�µ�Ð�´%Ø�°K´�¯�Ó�É�Ñ�°#Ê3µ�È�Ù)´�Ê�±'²�µ!±�Ì)°�È�Ê�Ì�µ�¯�°�µ�É�¯�Ê�´�Ê)å
Ø%´�Ë�É�°Uæ�Ù�À4Â%Ã�Á�À�º0Å0¼�½VÇK²�È�µ�¯�É�°*²I×&µ�Ð�°�Ë�´�È�µ�°#Ø�°�Ê)µ5Ì)³�³#É�¯�¯�°�±E²�Ê
µ�Ð�°
Ì�Í�Î�°�³�µK²�Ê3µ�°�¯�×g´�³�°*²�È�´;¯�°�µ�É�¯�Êç×6¯�Ì�Ñá½0Õ
è�Ð�°*È�Ú(°#³�²Ié(³�´�µ�²�Ì�ÊdÌ%×L²�Ñ�Ú�Ë�°�Ñ'°�Ê)µ�´�µ�²�Ì%Ê;Ú�¯�Ì�Ú(°�¯�µ�²�°�È*³#´�Ê�É�È�°
µ�Ð�°�È�´�Ñ'°L´�µ�Ì�Ñ'²�³�Ú�¯�Ì�Ú(Ì�È�²�µ�²�Ì�Ê�È9±�°�é(Ê�°�±�×6Ì�¯b²�Ê)µ�°�¯?×6´�³#°�Ú�¯�Ì�Ú)Ò
°�¯�µ�²�°�È�Ù*´�È�Ï�°�Ë�Ë�´�È�´�±�±�²�µ�²�Ì�Ê�´�ËKÚ�¯�Ì�Ú(°�¯�µ�²�°�È�¯�°�Ë�´�µ�°�±Wµ�Ì+µ�Ð�°
³�Ë�´�È�È5²�Ñ�Ú�Ë�°#Ñ;°�Ê)µ�´�µ�²�Ì�Ê0Õ9êë°�Ê�°�¯�´�Ë�Ë�å�Ù�°�Ø�°�¯�å'Í(Ì)Ì�Ë�°#´�ÊG°�Ô�Ú�¯�°#È�Ò
È�²�Ì�Ê7Ï�Ð�²�³�Ð;²�ÈLË�°�Ó�´�Ë�²�Ê7ì�´%Ø%´�²�È�´�Ë�È�Ì�´�Ê;´�µ�Ì�Ñ�²�³LÚ�¯�Ì�Ú4Ì�È�²�µ�²�Ì�Ê0Õ
è�Ð�°K°�Ø%´�Ë�É�´�µ�²�Ì�Ê;ÌX×V´�Ê;´�µ�Ì�Ñ'²�³�Ú�¯�Ì�Ú4Ì�È�²�µ�²�Ì�Ê;Ñ;É�È�µ�³�Ì�Ñ'Ú�Ë�°�µ�°
Ê�Ì�¯�Ñ�´�Ë�Ë�å.´�Ê�±G³�´�Ê�Ê�Ì�µ�Ð�´%Ø�°�È�²�±�°�°�í0°�³�µ�È�Õ
Ö�Ê;´�±�±�²�µ�²�Ì�Ê8µ�Ì*Í4Ì)Ì�Ë�°�´�Ê;°�Ô�Ú�¯�°�È�È�²�Ì�Ê�È�Ù�µ�Ð�¯�°�°�È�Ú4°�³�²�´�Ë(´�µ�Ì�Ñ'²�³
Ú�¯�Ì�Ú4Ì�È�²�µ�²�Ì�Ê�È�´�¯�°K²�Ê3µ�¯�Ì)±�É�³#°�±0Ù�²�Ê;Ì�¯�±�°�¯�µ�Ì.¯�°�Ú�¯�°�È�°#Ê3µK²�Ê)×6Ì�¯?Ò
Ñ�´�µ�²�Ì�Ê;´�Í(Ì�É�µ�µ�Ð�°*Ú�¯�Ì�Ó�¯�´�Ñ\³�Ì�Ê)µ�¯�Ì�Ë�î(Ì%ÏðïäñUò�ó

ô ·�Ãb¼�¸(Ç.²�È�±�°�é(Ê�°#±�×6Ì�¯5´;Ú�¯�Ì�Ó�¯�´�ÑDË�´�Í4°�ËbËgõ(µ�Ð�²�ÈKÚ�¯�Ì�Ú(ÌXÒ
È�²�µ�²�Ì�Ê�²�È5µ�¯�É�°8²�ÊG´�³�°�¯�µ�´�²�ÊdÚ�¯�Ì�Ó�¯�´�Ñ�È�µ�´�µ�°7²I×Lµ�Ð�°�¯�°;²�È
´�ÊE´�³�µ�²�Ø�°8µ�Ð�¯�°�´�±=Ï�Ð�Ì�È�°;³�É�¯�¯�°�Ê)µ*³�Ì�Ê3µ�¯�Ì�ËLË�Ì3³#´�µ�²�Ì�ÊE²�È
ËgÕ

ô º0Â%ß)Ã3öb¼�¸4ÇL²�Èb±�°�é(Ê�°�±8×6Ì�¯bÚ�¯�Ì�Ó�¯�´�Ñ�Ë�´�Í(°�Ë�Ë6õ�µ�Ð�²�ÈbÚ�¯�Ì�Ú(ÌXÒÈ�²�µ�²�Ì�Ê�²�È�µ�¯�É�°*²�Ê�´8³�°�¯�µ�´�²�ÊGÚ�¯�Ì�Ó�¯�´�Ñ\È�µ�´�µ�°�²I×9µ�Ð�°
Ê�°�Ô�µ
È�µ�´�µ�°�²�È�Ì�Í�µ�´�²�Ê�°�±=Í)åd°�Ô�°�³�É�µ�²�Ê�Ó�µ�Ð�°�Ú�¯�Ì�Ó�¯�´�Ñ÷È�µ�´�µ�°�Ò
Ñ'°�Ê)µ!Ë�´�Í4°�Ë�°�±GÍ)å;ËgÕ

ô º0Â%ß)Ã3øb¼�Ã0Ç�²�ÈL±�°�é4Ê�°�±'×6Ì�¯�´*Ú�¯�Ì�Ó�¯�´�ÑáØ%´�¯�²�´�Í�Ë�°�µ!Ï�Ð�²�³�Ð
²�ÈL´*¯�°�×6°�¯�°�Ê�³�°.µ�Ì*´*µ�Ð�¯�°#´�±�Ì�Í�Î�°�³�µ#õ�µ�Ð�²�ÈLÚ�¯�Ì�Ú4Ì�È�²�µ�²�Ì�Ê;²�È
µ�¯�É�°K²�Ê;È�Ì�Ñ'°!È�µ�´�µ�°5²I×0´*Ú�¯�Ì�Ó�¯�´�ÑðÈ�µ�´�µ�°�Ñ'°�Ê)µ!°�Ô�°�³#É�µ�°�±
Í)åPµ�Ð�°Oµ�Ð�¯�°�´�±F¯�°�×6°�¯�¯�°�±�µ�Ì+Í)å+µ'Ë�°�´�±�È'µ�ÌQµ�Ð�°�Ê�°�Ô�µ
È�µ�´�µ�°%Õ

â5Ê=°AÔy´�Ñ�Ú�Ë�°8Ì%×�´�È�å)Ê)µ�´�³�µ�²�³�´�Ë�Ë�ådØ%´�Ë�²�±�²�Ê)µ�°�¯?×6´�³#°�Ú�¯�Ì�Ú4°�¯�µ�å
È�Ú4°�³�²Ié(³#´�µ�²�Ì�Ê�²�È�ó

¶�¸)·�Å)Å>ùàú

û)ü)ý
þ Àyÿ þ Â%À)Ã��Qº0Â��4ÂoÀ���Â%Ã��(Â%»�·�Ã4¹��4Â
	
� ÿ�À�·)¸)¸à¹cº�ÃFßD¼�ß
���(Ç ¾¢Æb¼��gÀ4ÂoÃ�Á�À�º0Å¬¼�»4Â%ÃL¿;ß0Ç)Ç

ü)û
¹Uº�ÃF»4Â%Ã9¼%Ç+ú��������

�

è�Ð�°�È�Ú(°�³#² é4³�´�µ�²�Ì�Ê�ÌX×V³�Ë�´�È�È�Ú�¯�Ì�Ú4°�¯�µ�²�°#È!²�È�²�Ê�Ð�°�¯�°#Ê3µ�Ë�å7Ì�Í�Î�°�³�µ
Ì�¯�²�°�Ê)µ�°�±0Õ�è�Ð�°#åZ´�¯�°*´�É�µ�Ì�Ñ�´�µ�²�³�´�Ë�Ë�å8²�Ê�Ð�°�¯�²�µ�°�±�Ø)²�´;È�É�Í�µ�å)Ú)Ò
²�Ê�Ó�Ù%´�ÈL´�³�Ì�Ê�È�°��)É�°�Ê�³#°
ÌX×(µ�Ð�°�×6´�³�µ�µ�Ð�´�µ9²�Ê�È�µ�´�Ê�³�°�È�Ì%×0´�È�É�Í)Ò
³�Ë�´�È�È5´�¯�°*´�Ë�È�Ì;²�Ê�È�µ�´�Ê�³�°#È
ÌX×L²�µ�È5È�É�Ú(°#¯�³�Ë�´�È�È�°�È#Ù9µ�Ð�°�¯�°�×6Ì�¯�°7´�Ë�Ë
Ú�¯�Ì�Ú4°�¯�µ�²�°#È5µ�Ð�´�µ5´�Ú�Ú�Ë�å�µ�Ì;´;È�É�Ú4°�¯�³�Ë�´�È�È.È�Ð�Ì�É�Ë�±Z´�Ë�È�Ì;´�Ú�Ú�Ë�å
µ�Ì8²�µ�È�È�É�Í(³#Ë�´�È�È�°�È�Õ
� ������� ����!�"$#���%'&�()!+*-,/.0&�(1324&�56*718&�!+*6�9(
:=¯�²�µ�²�Ê�Ó!µ�°�Ñ�Ú4Ì�¯�´�Ë%Ë�Ì�Ó�²�³bÚ�¯�Ì�Ú4°�¯�µ�²�°�Èb²�Ê�µ�°�¯�Ñ'ÈVÌ%×�È�Ì�É�¯�³�°!Ú�¯�Ì%Ò
Ó�¯�´�ÑD°�Ô�Ú�¯�°#È�È�²�Ì�Ê�È*²�Ê�µ�Ð�°7Ê�Ì�µ�´�µ�²�Ì�Ê�²�Ê)µ�¯�Ì)±�É�³�°�±d²�Ê�È�°#³�µ�²�Ì�Ê
; Ð�´�È�´�Ê�²�Ê)µ�É�²�µ�²�Ø�°*Ñ'°�´�Ê�²�Ê�Ó;¯�°�Ë�´�µ�°�±Eµ�ÌGµ�Ð�°8³�Ì�Ñ'Ñ�Ì�Ê�É�Ê)Ò
±�°�¯�È�µ�´�Ê�±�²�Ê�ÓPÌX×7Ë�´�Ê�Ó�É�´�Ó�°�³�Ì�Ê�È�µ�¯�É�³�µ�È�Õ=< °�Ø�°�¯�µ�Ð�°#Ë�°#È�È�Ù;´�È
µ�Ð�°�È�°�Ú�¯�Ì�Ú4°�¯�µ�²�°#È5Ñ;É�È�µLÍ(°�Ø�°�¯�²Ié(°�±'×6Ì�¯�Ñ'´�Ë�Ë�å%Ù%µ�Ð�°�²�¯�È�°�Ñ�´�Ê)Ò
µ�²�³�È�Ñ;É�È�µ�Í(°�°�Ô�Ú�¯�°�È�È�°�±E²�ÊG´.×6Ì�¯�Ñ�´�Ë4Ï�´%å�Õ
è�Ð�°K×6Ì�¯�Ñ�´�Ë(É�Ê�±�°�¯�È�µ�´�Ê�±�²�Ê�Ó'Ì%×9µ�Ð�°*Ú�¯�Ì�Ú4°�¯�µ�åGË�´�Ê�Ó�É�´�Ó�°�²�Ê)Ò
µ�¯�Ì)±�É�³�°�±à²�Ê?>)°#³�µ�²�Ì�Ê ; ²�È;µ�²�Ó�Ð3µ�Ë�å=¯�°�Ë�´�µ�°�±Fµ�Ì=µ�Ð�°�°AÔy°#³�É)Ò
µ�²�Ì�Ê�È�°#Ñ�´�Ê)µ�²�³#È!ÌX×9´8ì�´%Ø%´8Ú�¯�Ì�Ó�¯�´�Ñ�Õ@:=°5Ð�´%Ø�°5´�Ë�¯�°�´�±�å�±�°�Ò
Ø�°#Ë�Ì�Ú(°#±=´Z±�°�µ�´�²�Ë�°�±=Í4°�Ð�´%Ø)²�Ì�¯�´�ËLÑ'Ì)±�°�ËLÌX×§ì�´%Ø%´ZÚ�¯�Ì�Ó�¯�´�Ñ�È
Í�´�È�°�±8Ì�Ê8Ë�´�Í4°�Ë�°�±7µ�¯�´�Ê�È�²�µ�²�Ì�Ê*È�å)È�µ�°�Ñ�È�ã7A)èB>�æ�Ù�Ï�Ð�²�³@Ð8²�ÈVÚ�¯�°�Ò
È�°#Ê3µ�°�±�²�Ê=ïDCUò�Õ!âKÉ�µ�Ì�Ñ�´�µ�²�³5µ�¯�´�Ê�È�Ë�´�µ�²�Ì�ÊZÌX×Lµ�Ð�°*ì�´%Ø%´;È�Ì�É�¯�³�°
³�Ì)±�°�²�Ê)µ�Ì8µ�Ð�²�È�Ñ�Ì)±�°#Ë0²�È�³�É�¯�¯�°�Ê)µ�Ë�åGÍ4°�²�Ê�Ó;²�Ñ�Ú�Ë�°�Ñ'°�Ê)µ�°�±�Õ
E�°#¯�°*Ï�°�×6Ì)³�É�È�Ì�Ê�³�Ë�´�È�È�Ú�¯�Ì�Ú(°#¯�µ�²�°�È�Í4°�³�´�É�È�°8µ�Ð�°.²�Ê)µ�°�¯�Ú�¯�°�Ò
µ�´�µ�²�Ì�Ê�ÌX×(Ú�´�³GF%´�Ó�°LÚ�¯�Ì�Ú4°�¯�µ�²�°�ÈL²�ÈVÈ�µ�¯�´�²�Ó�Ð)µ�×6Ì�¯�Ï�´�¯�±*´�Ê�±H�3É�²�µ�°
È�µ�´�Ê�±�´�¯�±�ÕI>y²�Ê�³�°*³�Ë�´�È�È5Ú�¯�Ì�Ú4°�¯�µ�²�°�È�´�¯�°.¯�°�Ë�´�µ�°�±�µ�Ì;µ�Ð�°*°#Ø�Ì%Ò
Ë�É�µ�²�Ì�Ê;Ì%×V³�Ë�´�È�È�²�Ê�È�µ�´�Ê�³�°#È�Ù(µ�Ð�°�²�¯�²�Ê)µ�°�¯�Ú�¯�°�µ�´�µ�²�Ì�Ê�³�´�ÊGÍ(°�±�°�Ò
é(Ê�°#±�Ï�²�µ�Ð�¯�°�È�Ú4°�³�µ8µ�Ì'´JA)èB>GÑ�Ì)±�°#ËV¯�°#Ú�¯�°�È�°�Ê)µ�²�Ê�Ó�´'³�Ë�´�È�È
²�Ê�È�µ�´�Ê�³#°7°�Ø�Ì�Ë�É�µ�²�Ì�Ê0Õ�Ö�µ
²�ÈKÏ!Ì�¯�µ�ÐdÊ�Ì�µ�²�Ê�Ó;µ�Ð�´�µ�µ�Ð�°8Ë�°�Ø�°#ËLÌ%×
´�Í�È�µ�¯�´�³�µ�²�Ì�ÊGÊ�°�°�±�°�±G×6Ì�¯!È�É�³�Ð
A)èB>;Ñ'Ì)±�°�Ë4±�°�Ú4°�Ê�±�È�Ì�Ê'µ�Ð�°
F)²�Ê�±7ÌX×V³�Ë�´�È�È!Ú�¯�Ì�Ú4°�¯�µ�å;³#Ì�Ê�È�²�±�°�¯�°�±�Õ!è�Ð�°K´�Í�È�µ�¯�´�³�µ�²�Ì�Ê;Ë�°#Ø�°�Ë
Ê�°�°#±�°�±Q×6Ì�¯8²�Ê)µ�°�¯?×6´�³�°GÚ�¯�Ì�Ú4°�¯�µ�²�°�È�²�È8Ð�²�Ó�Ð�°�¯;µ�Ð�´�ÊQµ�Ð�°GÌ�Ê�°
Ê�°�°#±�°�±=×gÌ�¯�²�Ñ�Ú�Ë�°�Ñ'°�Ê)µ�´�µ�² Ì�ÊZÚ�¯�Ì�Ú4°�¯�µ�²�°�È�ÙLÏ�Ð�²�³�Ð=²�È�´�ÊdÌ�Í)Ò
Ø)²�Ì�É�È�³�Ì�Ê�È�°��)É�°�Ê�³�°;Ì%×Lµ�Ð�°*Ï!´%å;µ�Ð�°�È�°7Ú�¯�Ì�Ú4°�¯�µ�²�°�È5Ï�°�¯�°8±�°�Ò
é(Ê�°#±�²�Ê
>)°�³�µ�²�Ì�Ê ; Õ*â5ÊO²�Ê)µ�°�¯�×6´�³�°8Ú�¯�Ì�Ú(°�¯�µ�å�²�Ê)Ø�Ì�Ë�Ø�°�È5Ì�Ê�Ë�å
Ñ�°#µ�Ð�Ì)±+³#´�Ë�Ë�´�Ê�±P¯�°�µ�É�¯�ÊF°�Ø�°�Ê)µ�È�ÙKÏ�Ð�²�Ë�°'´�ÊP²�Ñ�Ú�Ë�°�Ñ'°�Ê)µ�´XÒ
µ�²�Ì�Ê+Ú�¯�Ì�Ú4°�¯�µ�åP¯�°A×6°�¯�ÈG´�Ë�È�Ì=µ�Ì=µ�Ð�°�È�µ�´�µ�°�Ì%×*Ì�Í�ÎA°�³�µ;é4°�Ë�±�È�Ù
È�µ�´�µ�²�³�é4°�Ë�±�È�´�Ê�±;È�å)Ê�³�Ð�¯�Ì�Ê�²LK�´�µ�²�Ì�Ê�Ñ'Ì�Ê�²�µ�Ì�¯�Èb²�Ñ�Ú�Ë�²�³�²�µ�Ë�åK´�È�Ò
È�Ì)³�²�´�µ�°�±GÏ�²�µ�ÐGÌ�Í�ÎA°�³�µ�È#Õ
â5³#³�Ì�¯�±�²�Ê�Ó7µ�Ì7µ�Ð�°�´�Í4Ì%Ø�°K³�Ì�Ê�È�²�±�°�¯�´�µ�²�Ì�Ê�È�Ù�Ï�°
Ð�´%Ø�°5±�°�é(Ê�°�±
µ�Ï�Ì
±�²�È�µ�²�Ê�³�µMA)èB>8Ñ'Ì3±�°�Ë�È�Ù�Ì�Ê�°�×6Ì�¯L±�°�é4Ê�²�Ê�Ó*µ�Ð�°5È�°#Ñ�´�Ê)µ�²�³#È
Ì%×L²�Ñ�Ú�Ë�°#Ñ�°�Ê)µ�´�µ�²�Ì�Ê;Ú�¯�Ì�Ú4°�¯�µ�²�°�È*´�Ê�±Eµ�Ð�°8Ì�µ�Ð�°�¯�Ì�Ê�°�×gÌ�¯�²�Ê)Ò
µ�°#¯�×6´�³�°;Ú�¯�Ì�Ú(°#¯�µ�²�°�È#ÕNA�°�µ*É�È*³#´�Ë�ËLµ�Ð�°�ÑOA)èB>)Ñ_´�Ê�±PA)èB>)Ê�Ù
¯�°#È�Ú4°�³�µ�²�Ø�°�Ë�å�ÕLÖ�ÊQA)èB>)Ñ�Ù�´*È�µ�´�µ�°�²�ÈL°�Ô�Ú�Ë�²�³�²�µ�Ë�å8³�Ì�Ñ'Ú(Ì�È�°�±'Ì%×
´�Ë�Ë�²�Ê)×gÌ�¯�Ñ'´�µ�²�Ì�Ê�¯�°�Ó�´�¯�±�²�Ê�Ó7µ�Ð�°5²�Ê�±�²�Ø)²�±�É�´�Ë3È�µ�´�µ�°5ÌX×Vµ�Ð�°KÌ�Í)Ò
Î�°�³#µ�Ù!²�Ê�³#Ë�É�±�²�Ê�Ó�²�µ�È8´�È�È�Ì)³�²�´�µ�°�±+È�å3Ê�³@Ð�¯�Ì�Ê�²RK#´�µ�²�Ì�Ê+Ñ�Ì�Ê�²�µ�Ì�¯�Õ
âFµ�¯�´�Ê�È�²�µ�²�Ì�Ê'²�ÊJA)èB>)Ñð²�È�é(¯�°#±�Í)å;µ�Ð�°K°�Ô�°�³�É�µ�²�Ì�ÊGÌ%×V´*Ú�¯�Ì%Ò
Ó�¯�´�Ñ�È�µ�´�µ�°�Ñ�°#Ê3µ#Õ9Ö�ÊSA)èB>)Ê8²�Ê�È�µ�°�´�±�Ù3´�È�µ�´�µ�°�²�Èb¯�°�Ú�¯�°#È�°�Ê)µ�°#±
´�Èbµ�Ð�°5Ì�¯�±�°�¯�°�±�È�°�µLÌX×VÑ�°�µ�Ð�Ì)±7³�´�Ë�Ë�´�Ê�±8¯�°#µ�É�¯�Ê�°�Ø�°�Ê)µ�È�µ�Ð�´�µ

T�U�V/WYX�Z�Z\[�]^]_W�`SaLbdc_T�W e�U/f^c8aRb4c_T�W XhghijW�Z�c@aLb�c_W�]7klUhZ�W�m@n'c^]_Uhb�o
f^aLc_aRX/b'X�kBp�qBr�b'aLf4s�]_W�`Pg�tuUwvJW\c^T�X�`'Z�U/xRxzy{]^W�c_[�]^b'W�V/W�b�c�m
| bJe}]^UhZ\c^aLZ�W�~�p�qBr�v�aLf�U�]^WGs9b�W�vJW\b�c�X�kYp�qBr�b�~�aLbSc^T�W4f_W�b�f^W
c^T}Uhc W�U/ZGTJf^c_Uhc_WBaLbJp�qBr�bQ�laRb�c_W�]7k6U/Z�WBf_c^U/c^W���Z�Xh]_]^W�f_e�X/b�`�f0c^X
UJf_W���[�W�b�Z\WJX�k�f^c^U/c^W�fHaRbup�qBr�v��6aLvJe�xLW�v�W�b�c^U/c^aLXhb�f^c^U/c^W�fG�Gm
� Xh]MWG��Uhv�e�xLW�~�UhbQaLb�c_W�]7klUhZ�W�f_c^U/c^W�aLbJ�MT}aRZGTQUhc_Xhv�aRZ0e�]^X/e�X{o
f^aLc_aRX/bu�{�����}�+���@�_�)�4aLfMc^]^[}W�Z�X/]^]_W�f^e9Xhb�`}f�c^X�USf^W���[�W�b}Z�WSX�k
aLvJe�xLW�v�W�b�c^U/c^aLX�b
f_c^U/c^W�f�]^W�e�]_W�f^W\b�c_aLb��3aRb�c_W�]^v�W�`�aLUhc_WJf^c_W�e�f
aLbQc^T�W�Wj��W\Z�[�c^aLX/bwX�k vwm n�Z\XhvJe}xRW\c^W0k6Xh]_vJU/xRaL��U/c^aLXhb�X�k c_T�W
aLb�c^W�]�k6UhZ�W�Uhb}`
aLvJe}xRW\vJW�b�c^U/c^aLXhbQp�qBrQv�X�`}W�xLfBaLfBe�]_W�f^W\b�c_W�`
aLb�� �\�7m | cSaLfSW�U/f^tPc_X'f^W�W c^T�U/c�~MUhfSaLb�c^W�]�k6UhZ\WwUhb�`$aLvJe�xLWGo
vJW\b�c_Uhc_aRX/b4e�]^X/e�W�]_c^aLW�f Z\Uhb�g�W�aLb�c_W�]^e}]^W�c_W�`JX/b�p�qBr4v�X�`}W�xLf�~
c^T}W�twZ�U/bwUhxLf^XSg9W�c^]^U/b�f^xLU/c^W�`waLb�c^X�UJv�X�`}W�x�ZGT�W�ZG¡hW�]HaRb}e�[�c
xLUhb��/[�Uh�/W��lW�mD��mL~�¢ £M¤4¥w¦ p§n�b�W�VhW\]7o7Z�xLUhaLvJfG�Gm
qMT�aLfP¡�aLb�`�X�kw]_W�xLUhc^aLX/b�f^T�aLe�g9W�c7��W\W�b¨p�qBr�v©Uhb}`ªp�qBr�b
vJU/¡hW�fMaLcMe9Xhf_f^aLg�xLW�c_XSaLb�c_W�]^e}]^W�c4aLb�c^W�]�k6UhZ�W�e�]_Xhe9W�]^c_aRW\fdg9Xhc_T
Xhbwp�qBr�bJUhb}`JXhbwp�qBr�vwmY¤Ik Z�Xh[}]^f^W{~�aLcMaLf�aLvJe9Xh]_c^U/b�c�c^T�U/c
c^T}WSc^]^[}c^T'V�UhxL[�W�X�k�UhbuaRb�c_W�]7k6U/Z�WSe�]_Xhe9W�]^c7tP¢«aLfdc_T�WSf^U/vJW
k6X/])UhbHWG��W�Z�[�c_aRX/b�e}Uhc^T�X�k�p�qBr�b�Uhb�`Hk6X/])c^T}W�Z�X/]^]_W�f^e9Xhb�`}aRb}�
e�U/c^TuX�kBp�qBr�vw~�g9W�Z�U/[�f^W�aRbuc^T}aRf4Z�U/f^W���WSZ�U/b
Z\xRU/aLv¬c^T�U/c
¢­T�XhxL`�f�aLb®p�qBr�b®a°¯?aLc�T}XhxL`�fSaLb®p�qBr�vOUhb�`$V�aRZ\WGo-V/W�]^f_U�m
nBbPp�qBp'klXh]^vS[}xRU�aLf�Z�xLXhf_W�`'[�b�`}W�]�f^c_[�c^c_W�]^aLb��ua°k�aLc^f�c_]^[�c_T
V�UhxL[�W�aLf�b�X/c�U{¯±W\Z�c^W�`«g�t'c_T�WJU/`�`�aLc^aLX/b�y�`�W\xRW\c^aLXhb'X{kdf^c_[�c7o
c^W\]^aLb��Jf_c^W�e}fdaLbQc^T}W�WG��W�Z�[�c_aLXhbwe�U/c^TwX/bQ�MT�aLZ²T aRcMaLfMW�V�U/xL[�o
Uhc_W�`�~��MT�W�]_WMUdf_c^[�c_c^W�]_aLb���f_c^W�eSaLf@Xhb}WM�MT�aLZ²T�`�X�W�f b}Xhc@UhxLc^W\]
c^T}W�c^]_[�c^TwV�U/xL[�W4X�k c^T�W�Uhc_Xhv�aRZMe}]^Xhe9Xhf_aLc^aLXhb�f0X�Z�Z�[�]_]^aLb��JaLb
c^T}W�k6X/]^vS[�xLU}mB³'W�Z\xRU/aLvªc_T�Uhc4c^T}W�aLvJe}xRW\vJW�b�c^U/c^aLXhbSf_c^U/c^W�f
Z�X/]^]^W\f^e9Xhb�`�aLb���c^X�UhbQaLb�c_W�]7klUhZ�W�f_c^U/c^W�U/]^W�f_c^[�c_c^W�]_aRb}�Jf^c_W�e�f
�MaLc^TQ]^W\f^e9W�Z�c�c_XSaRb�c_W�]7k6U/Z�W�e�]_Xhe9W�]^c_aLW�f�mBn0fBUSZ�X/b�f^W\��[}W�b�Z�W�~
c^T}W�aLb�c^W�]_e�]^W\c^Uhc_aLXhbuX�k aLb�c_W�]7klUhZ�WHk6Xh]_vS[�xLUhW4c^T}UhcBU/]^W�Z�xLXhf_W�`
[�b�`}W�]4f^c^[}c^c^W\]^aLb��QaLfMc^T�W�f^U/vJW4aLb´p�qBr�vªU/b�`waLb
p�qBr�b�mMn
k6X/]^vJU/x�e�]_X�X{k aRfM�/aLVhW�b�aRbu�D�+�7m
qMT�aLf)Z\xRU/aLv�aRf8[�f^Wjk6[�x�aLb�X/]^`�W�]@c_XBV�UhxLaL`�U/c^W aLb�c^W�]�k6UhZ\W�e�]_Xhe9W�]7o
c^aLW�fM[}f^aLb��SvJX�`�W\x�ZGT�W�ZG¡�aLb���m | b�k6X/]^vJU/xLxRt{~h��W4Z�X/b�f^aL`�W\]Mc^T�U/c
Uhb3aLb�c^W�]�k6UhZ\W
e�]_Xhe9W�]^c7t3aLfJV�U/xLaR`}Uhc^W\`Pa°k�aRcST}XhxL`�fSaLb?W�V/W�]^t
aLvJe�xLW�v�W�b�c^U/c^aLX�b
X{k�c^T�WQaLb�c^W�]�k6UhZ�W{m � Xh]�WG��UhvJe}xRW{~ aRb3c_T�W
k6X/xRxLX��MaLb��4µhU�V�U�Z�X�`�W�¶

�+��·}¸/¹�º
»��/¼�� ½l¾�º9�h� ½7¿9À���º�¸{¹ Á
�+��·}¸/¹�º
»��/¼�� ½l¾�º9�h� ½7Â9�+��Ã±À+Ä�Â���Å�ºYÁ

�+��º�À�¹�Æ��}��ÀPÇ/º��}��Ã�È
¼�¸}��Ä3·�¾�Å+ÉÊ�+�+��º�����Æ�¸9��Á
����º3·�¸{· ���±Á

Ë�Ì�Í
·�¹�¸{·�À�¹�º�Î?Ï�¸{��Å���Å�º9À+�±��Î?Ð
Æ�¸/¹������«�+��º?Ñ ÒwÎ ÒQÓÔ�GÑÖÕ7Ð?Î��
�G¹9À�º/¾�¹/��Å��_·�¾�Å+É�Ò_Ñ±��×¬��Õl¹�À�º/¾�¹/�±Å��_·�¾�Å�É�Ò_Î��
×
¹9À�º/¾�¹h��Å��_·�¸�·�Ò_Ó������uØ�Ù3ÑÚÐ�Ð3Ó

Ì�Ë
Û

�h����Å�ÅP¿9À���º�¸h¹�Ç/º��}��Ã��+��·��}À+��À���º9ÅPÇ/º��}�+ÃÚÈ

¿9À���º�¸/¹?Ä��/º��?Ð$��À�Ü?¿9À���º�¸/¹@���±Á
�+��º?º�¸{·�Á
·�¾�Ý������?Å�Î/���+É�¹�¸{����Ó�À�Ä$¼�¸}��Ä3·�¾�Å+ÉÊ�+�+��º�����Æ�¸9�PÈ
Ä��hº���½^�/Ä�Ä@�Gº�¸{·ßÞ�Þ@Ò���À�Üáà���º9À��9À�¹@�+�+��Æ�¸9����Á

Û
·�¾�Ý������?Å�Î/���+É�¹�¸{����Ó�À�Ä«����º3·�¸{· ���PÈ
â Ý}»}À���º�����Æ�¸?Ð«Ä��hº���½7¹9À���¸/¼9À��jØ�Øãº�¸{·)��Á
¹9À�º/¾�¹/�ä���+à+��º9À��9À�¹��$����Æ�¸9�8½²�+��º�¿����{¾�À����±Á

Û
Û

�h����Å�Å'Â9��Å�º�Ç/º��}��Ã��+��·���À+��À+��º�ÅPÇ/º��}��Ã�È
Â9�+��Ã±À�Ä�Â9��Å�º3Ä��/º��?Ð$��À�Ü
Â9�+��Ã±À�Ä�Â9��Å�º@����Á
·�¾�Ý������P¼�¸}��Ä3·�¾�Å�É �+�+��º
�+��Æ�¸9�NÈ
Ä��hº���½^�/Ä�Ä�å9��¹9Å�º@�_��À�Ü«à���º9À��9À�¹@�+�+��Æ�¸9����Á

Û
·�¾�Ý������?�+��º3·�¸{· ���$È
â Ý}»}À���º�����Æ�¸?Ð«Ä��hº���½7�9À�º�å9��¹9Å�º@����Á
¹9À�º/¾�¹/�ä���+à+��º9À��9À�¹��$����Æ�¸9�8½²�+��º�¿����{¾�À����±Á

Û
Û

c^T}W aLb�c_W�]7klUhZ�W e}]^Xhe9W�]_c7t�Ï�¸{��Å���Å�º9À+����ÎMaLb�klXh]^v�UhxLxLt f^U�t�f8c^T�U/c
a°kBUQ·�¾�Å�É �GÑ��JaLfHk6XhxLxLX���W�`
g�t'U ·�¸�· ���S�MaLc^T$b�XuaRb�c_W�]^v�WGo
`�aLUhc_WwXhc_T�W�]�·�¾�Å�É �GÎ��/~æc_T�W�b�c^T�Wu]^W\c^[�]_b�V�UhxL[�WQX�k�·�¸{· ���
aLfSÑ9mÚqMT}Wwe�]^X/e�W\]^c7t?aLfSUh[}c^Xhv�Uhc_aRZ\UhxLxLt
aLb�T�W\]^aLc^W�`«g�t$c^T�W
¿9À���º�¸/¹�Ç/º��}�+ÃSUhb�`QÂ9��Å�º�Ç/º��}��ÃJZ\xRU/f^f_W�f�m | c_fBV�U/xRaL`�U/c^aLXhbS]_WGo
`�[�Z\W�fJc_X
c_T�WQV�UhxLaL`�Uhc_aRX/b'X�k4g�X/c^T3aLvJe�xLW�v�W�b�c^Uhc_aLX�b
e�]_Xhe�o
W�]_c^aLW�f�aRb'c_T�WSc7��XwaLvJe�xLW�v�W�b�c^aLb��SZ�xLUhf_f^W�f\m | c�Z\UhbPg9WJW\Uhf7o
aLxLt�f_W�W�bQc^T�U/c�c_T�W4¿9À���º�¸/¹�Çhº��}�+Ã�aLvJe�xLW�vSW\b�c_Uhc_aRX/b�]^W\f^e9W�Z�c^f
c^T}WSe�]^X/e�W�]_c7t'g�W\Z�Uh[�f_WQg�X/c^Tu·�¾�Å�ÉuUhb�`u·�¸{·
Uh]_WSf^t�b�ZGT�]_X�o
b�aL��W�`§~Be�]^W\VhW�b�c^aLb��ãk6Xh]�Z�Xhb}Z�[�]^]_W�b�cQc^T�]_W�Uh`�UhZ�Z\W�f^fwc_X'c^T�W
f^c_UhZG¡S`�U/c^U�m�¤0bQc^T}WdZ\Xhb�c^]_Uh]^t/~�c^T}WdÂ9��Å�º�Çhº��}�+ÃçaLv�e�xLW�vJW�b�o
c^U/c^aLXhbuV�aLXhxLUhc_W�f�c^T}WJe�]_Xhe9W�]^c7t'aLb'Z�X/b�Z�[�]_]^W�b�cSUhZ\Z�W�f^f\mPp�W�c
[�f4Z�X/b�f^aL`�W�]Hc7��XQf^W\e�Uh]_Uhc^WSc_T�]^W\Uh`�f\~Yº�èSU/b�`wº�é}~)W�UhZGT'X/b�W
e9W�]7k6X/]^v�aRb}��·�¾�Å+É�W�f@Uhb�`�·�¸{·�f)X/b�c_T�WMf^U/vJW�aRb}f^c^U/b�Z�WMX{k�c^T�W
Z�xLUhf_f4Â���Å�º�Ç/º��}�+Ã�m | k�º±èêT�Uhf4e�[�f_T�W�`'c_T�W�V�U/xL[�W4�
U/b�`
aLc_f
Z�U/xRx�c^X ·�¾�Å+É
]_W�c^[�]_b�fSUhb}`Pa°k^~@U�k6c_W�]^��Uh]_`�f�~ º�é e�[�f^T}W�fSc^T�W
V�UhxL[�W4t�g�[�c�~�g9WGk6X/]^W�aRc_fMZ�UhxLx8c^XS·�¾�Å+É�]_W�c^[�]_b�f�~8º±èHaLf^f^[}W�f4U
Z�U/xRx�c_X4·�¸�·��MT�aLZ²T�]^W\c^[�]_b�f�g9WGk6X/]^WMc_T�WBf_W�Z�Xhb}`SZ�UhxLx�c_XB·�¾�Å+É�~
c^T}W�bQc^T�W�]_W�c^[}]^b�W�` V�UhxL[�W�`�aRfMt/~�aLb�f^c_W�Uh`QX{k)��m
| kYaLbQc^T}W4k6[�c_[�]^W�X/c^T�W\]BZ�xLUhf_f^W�f4�MaLxLx�g9W�`�Wjs�b�W�`ug�tJf^e9W�Z�aLU/xëo
aL��Uhc_aLXhb k6]^X/vÖc^T}W�r�c_UhZG¡
aLb�c^W\]7k6U/Z�W�~ c^T}W�t'�MaLxRx@U/xRf_XwaLb�T�W�]_aLc
c^T}WNr�c_UhZG¡3aLb�c_W�]7klUhZ�Wue�]^X/e�W\]^c^aLW�f\~��MT�aLZGT
�MaLxLxBT�U�V/Wwc^X$g�W
VhW\]^a°s�W�`�m
nBf�UhxL]^W�U/`�t�v�W�b�c^aLXhb�W\`�~hc^T}WMV�UhxLaL`�Uhc_aRX/b�X�k�Uhb�aLvJe�xLW�v�W�b�c^U{o
c^aLX/bwe�]^X/e�W\]^c7t'¢?f_e�W�Z\aës9W�`'�MaLc^T�aLbuUJZ�xLUhf_f�]^W\`�[�Z�W�f�c^X�c^T�W
V�UhxLaL`�U/c^aLXhb0X�k�¢waLb�W\VhW�]_t�Z�xLUhf_fYaLb�f_c^U/b�Z�W�m@³'W Z�U/xRx�c_T�W�xLU/c^c^W\]
Uhb�aLb�f^c_Uhb�Z\WMe�]^X/e�W�]_c7thm qMT}WMc^]^[}c^TSX�k�Uhb�aLb�f^c_Uhb�Z\WMe�]^X/e�W�]_c7t
aLf)`�Wjs�b�W�`SX/b�WG��W�Z\[�c^aLXhbSf_W���[�W�b�Z\W�f�aLb�p�qBr�v�f^c_Uh]^c_aLb��4�MaRc_T
c^T}W�f^c_Uhc^WHaRb �MT�aLZ²TQc_T�W�aLb�f_c^U/b�Z�W�aLfBU/Z�c^[}UhxLxLtSZ�]^W�U/c^W�`§mdn0xëo
c^T}Xh[��/TPaLb3µhU�V�U'XhghijW�Z�c^f�vJU�tug�W �hUh]_g�Uh�/WQZ�XhxLxLW�Z�c_W�`�~B��W
Z�X/b�f^aL`�W�]êk6Xh]�f^aLvJe}xRaLZ�aLc7tuc^T�U/cJc_T�W�aL]JxLa°k6WQ`�X�W�fQb�W�V/W�]Qf^c^X/e
�6�MT}W�bQc^T�W�tQU/]^W4b�XSxLXhb��/W�]M]^Wjk6W�]^W\b�Z�W�`�~@c^T}W�aL]Mf^c^U/c^W�Z\UhbQg�W

ìhí_í^î�ï�ð�ñQò^ó�ô^ð�ï�ìhõLöJî}ö�÷Gø�ìhö�ù/ð�ñ�ú6óhô_ð�ûhð\ô²üGý
þ óS÷�óhö}÷�ÿLî�ñ�ð��)ò_ø�ð�û�ì/ÿRõLñ�ì/ò^õLóhö�ó�ú õLö�ò^ð�ô�ú6ìh÷�ð�ìhö}ñ�õLï���ÿLð�ïJð�ö��
ò^ì/ò^õLóhö���ô_ó��9ð�ô^ò_õRð\í�ú6ó/ÿLÿRó��Mí0ìQò^ó����-ñ�ó��MöuïJó�ñ�ð\ÿ6ý
	BöuõLö�ò_ð�ô��
ú6ì/÷�ð���ô^ó
��ð�ô_ò��Jø�ó/ÿLñ�íMõ°úYð�û/ð�ô���÷�óhô_ô^ð�í���ó/ö�ñ�õLö�ùJõLï���ÿLð�ïSð�ö�ò^ì��
ò^õLó/ö��}ô^ó��9ð�ô_ò��wø�óhÿLñ�í����Mø�õLÿRð4ì/öwõLï���ÿLð�ï�ð�ö�ò^ìhò_õLóhö���ô_ó��9ð�ô^ò��
ïSî�í_ò�ø�ó/ÿLñJúlóhôMð�û/ð�ô��QõLö�í^ò_ìhö�ò^õLì/ò^õLóhö�ó�ú ò^ø�ðH÷�ÿLìhí^í\ý�	BíBï�ð�ö��
ò^õLó/ö�ð�ñ���ðGúlóhô^ð��Yî�í_õLö�ùJð���õLí^ò_ð�ö�ò�ïJó�ñ�ð\ÿY÷Gø�ð\÷��/ð�ô�ò_ó�ó/ÿLí��lð�ýDù�ý �
!#"%$�& ü0ò^óSûhð\ô^õ°ú'�(��ô^ó/ùhô_ìhï)��ô^ó
��ð�ô_ò^õLð�í�õLí*��ó/í^í^õ ��ÿLð+�9ð�÷�ì/î�í^ð
ò^ø}ð�ï�ó�ñ}ð�ÿ)÷Gø�ð�÷��/ð�ô^í�õLö#��î�ò0ÿRì/ö�ùhî}ìhùhð\í+�6ð{ý ù}ý � "-,�.0/2143 	4ü
ð�í_í^ð�ö�ò^õLì/ÿRÿ ��ñ�ð�í^÷\ô^õ ��ðHÿRì
��ð\ÿRð\ñ�ò_ô^ì/ö�í^õLò^õLó/ö�í���í^ò^ð\ïJí�ý
$ ö5��ô^ì/÷�ò^õL÷�ð��6��ðÔì��#�}ô^óhì/÷Gø ò_ø�ðªû/ð�ô^õ87�÷\ìhò^õLó/ö9��ô_ó���ÿLð�ï
�9óhò^ò_óhï:�-î#�§ý�	Bí�ïJó�ñ�ð�ÿ@÷Gø�ð�÷���õLö�ùuñ�ð�ìhÿLí+�MõLò_ø'ìh÷�ò_î�ìhÿ;��ô^ó��
ùhô_ìhï­í^ò^ì/ò^ð�í���õLò@÷�ì/ö���ðMî�í_ð�ñJò_ó4÷²ø}ð�÷���õLö�í_ò^ìhö}÷�ð���ô^ó
��ð\ô^ò^õLð�í��
óhö}ð�ì/ò)ò^ø}ð�ò_õRï�ð�ý=<?ø}ð�ö�ìhÿLÿ�õLö�í^ò_ìhö�÷\ð�í@ó�ú�ì0÷�ÿLìhí^í@ì/ô^ð;��ô^ó�û/ð�ö
ò^ó'í_ìhò_õRí�ú'�Pì>�}ô^ó��9ð�ô_ò����?��ðQí^ì��$ò^ø�ì/òJì'÷�ÿLìhí_í���ô^ó
��ð\ô^ò��?õLí
í^ì/ò^õLí�79ð�ñ�ýA@�î}ô^ò^ø}ð�ô^ï�óhô^ð��Yõ°úBìhÿLÿ õLï���ÿLð�ïJð�ö�ò_õRö}ùS÷�ÿLìhí^í_ð�íSìhô_ð
��ô_ó�ûhð�öuò^óQí^ì/ò^õLí7úB�wìhöwõLö�ò^ð\ô7ú6ì/÷�ð���ô^ó
��ð\ô^ò��
�)ò^ø�ð\ö'ò^ø�ð�õLö�ò_ð�ô��
ú6ì/÷�ð���ô^ó
��ð�ô_ò��Qø�óhÿLñ�í\ý
C í_õLö�ù4ïJó�ñ�ð�ÿ�÷Gø�ð�÷���õLö�ù#�hó/ö�ðM÷�ì/ö�ñ�ð\÷�õLñ�ðMõ°ú±ì/ö 3�þ?3 ú6óhô_ïSî�ÿLì
ø�ó/ÿRñ}í ú6ó/ô�ìSí���í^ò^ð\ïD��ùhõLû/ð�öJò_ø�ìhò�ò^ø�ð4í���í_ò^ð�ï¬í_ò^ì/ò^ð4í���ì/÷�ð�õLí
7�ö�õLò_ð�ýE@}óhô�ò^ø�ð ïJóhï�ð�ö�òF�%��ð´ú6óhô_ïJìhÿLÿ �D��ô_ó�ûhð�ñ3ò_ø�ìhòSò_ø�ð
7�ö�õLò_ð�ö�ð�í_ídó{úYò_ø�ð+��ô_óhùhô_ìhïäí_ò^ì/ò^ð�í���ìh÷�ð�õLíMìhÿLí^ó�ìSí^î�GJ÷�õLð�ö�ò
÷�ó/ö�ñ�õLò^õLóhö ú6ó/ôdò_ø�ðSñ�ð�÷\õRñ}ì���õLÿLõLò���ó{ú�÷�ÿLìhí_í+��ô_ó��9ð�ô^ò_õRð\í�H�î�ì/ö��
ò^õ87�ð\ñ
ó�û/ð�ô�7�ö�õLò_ð�ñ�ó/ïJì/õRö}í�ý�IMó���ð�û/ð�ôF�@ïJó/ô^ð+��óhô��wø�ìhíHò^ó
�9ðJñ�ó/ö�ðQõRö'ó/ô^ñ�ð\ôSò^ówï�ì��hðSò_ø�ðJñ}ð�÷�õLí^õLóhöJ��ô^ó�÷�ð\ñ�î�ô^ð ÷�óhí_ò
ð�K�ð�÷�ò_õRû/ð�ý 1 ûhð�ö�õëúL7�ö�õLò^ð��MH�î�ì/ö�ò_õ87�÷�ìhò_õLóhöSñ�ó/ïJìhõLö�í@÷�ì/öJí_ò^õLÿLÿ
�9ðdÿLì/ô^ùhð4ð�ö}óhî�ù/ø�ò_ó�ï�ì��/ðBò^ø}ðdñ}ð�÷�õLí^õLóhöQû/ð�ô���ð��#��ð�ö}í^õLûhð�õLö
ò^õLï�ð�ì/ö�ñ'í���ì/÷�ð�ý þ ø�õLí+��ô^ó
��ÿLð�ï ÷�ìhö>�9ðJó�û/ð�ô^÷\óhïJðSî}í^õLö�ù
��ô_óhùhô_ìhï­ì���í_ò^ô^ì/÷�ò^õLó/ö�ò_ð�÷Gø�ö�õ H�î�ð�í�NPO�Q��hì/ö�ñ�õRí@÷�ó/ö�í^õLñ�ð\ô^ð�ñSì/í
ú6î�ô_ò^ø�ð\ô?��óhô��9ý
	Bö­õLï��9óhô^ò_ìhö�ò(��ô^ó
��ÿLð�ï ú6ì/÷�ð�ñ6�M��ðR��õLí_ò^ð�ö�ò'ûhð\ô^õ87�÷�ì/ò^õLóhö
ò^ó�ó/ÿRíuõLí'ò^ø�ð3ÿLìh÷���ó{ú�î�ö�ñ}ð�ô^ÿ ��õLö�ù
í_î#�#�9óhô_òuú6óhôuñ#��ö�ìhï�õL÷
ïJð\ïJóhô��4ïJìhö}ìhùhð\ïJð�ö�ò@ìhö�ñ���ó/ÿ ��ï�óhô���ø�õLí^ïS�lõ6ýDð�ý ��ñ#��ö�ìhï�õL÷
ïJð\ò^ø�ó�ñ4ñ�õLí���ì/ò^÷Gø�üjý $ ö�óhô_ñ�ð�ô@ò^ó0ìhÿLÿLð�û�õRì/ò^ð ò_ø�õLí=��ô_ó���ÿLð�ï2�T��ð
ø�ì�û/ð�ð���ò_ð�ö�ñ�ð�ñ'ò_ø�ðSïJó�ñ�ð\ÿ)÷Gø�ð�÷��hð\ô !#"%$�& �=��ô^ó�û�õLñ�õLö�ù�ð�G��
÷�õLð�ö�òSð�ï��9ð�ñ�ñ�ð\ñ?í^î#�U��ó/ô^òSúlóhô�ò^ø�ðwï�ó�ñ�ð�ÿLõLö�ùwó�ú4ñ#��ö�ìhï�õL÷
ô^î}ö��-ò_õLïJðBõLö�úlóhô^ï�ìhò_õRó/ö�NWV�Q7ý
X Y�Z4[#\�]_^-\�`#ab]'cedgf*`#abab[Mh�d4i
þ ø�ð'í���ð�÷\õj79÷�ìhò_õRó/ö�ó�ú���ð\ø�ì�û�õRó/ô(��ô^ó
��ð�ô_ò^õLð�íuð��#��ô^ð\í^í^ð\ñ õLö3�þ?3 õRí0ùhð�ö}ð�ô^ì/ÿRÿ �Q÷�ó/ö�í^õLñ�ð�ô_ð�ñuìJñ�õ8GJ÷�î�ÿLò0ò^ìhí��9ý 1 û/ð�öuí^õLï��
��ÿLð4��ô_ó��9ð�ô^ò_õLð�í ÷�ì/ö��9ð�ð\ô^ô^ó/ö�ð�ó/î�í^ÿ �4ú6ó/ô^ï�ìhÿLõ k�ð�ñ��b�Mø�õL÷²øHïJì��
ÿLð�ìhñSò_ó4í���î�ô_õLóhî�í ð\ô^ô^ó/ô�ô_ðF�9óhô^ò_íF�#�Mø�õLÿLð�ô^ð�ì/ÿ�ð�ô_ô^ó/ô^í�÷�óhî�ÿLñ��9ð
ö�ð�ù/ÿLð�÷�ò^ð\ñ�ýl	0í�ï�ð�ö�ò^õLóhö}ð�ñ'õLö ! ð�÷\ò^õLóhönm�� ò^ø}ð�÷\óhö�÷�ð���òSó�ú
í��9ð�÷�õ87�÷\ìhò^õLó/öA��ì/ò^ò^ð\ô^ö>��ìhí�õLö�ò^ô_ó�ñ}î�÷�ð�ñ$õRöuóhô_ñ�ð�ô�ò^ó�ú6ì/÷�õLÿRõ8�
ò^ì/ò^ð+�}ô^ó��9ð�ô_ò^õLð�í4í��9ð�÷�õ87�÷�ì/ò^õLóhö§ý $ öQò_ø�õLíMí^ð�÷�ò_õLóhö���ð4ð��#��ÿLóhô_ð
ò^ø}ð>��ó/í^í^õ ��õLÿLõLò��3ó�ú�ð�ö}÷�ì���í_î�ÿLìhò_õRö}ù®í���ð\÷�õ87�÷�ìhò_õLóhöo��ì/ò^ò^ð\ô^ö�í
õLö�ò^óDp/ì�û�ìwõLö�ò_ð�ô7úlìh÷�ð�íSì/ö�ñPì
�#��ÿ ��õLö�ùQò^ø�ð�ï ò^óuìhöPðR��õLí_ò^õLö�ù
í^ó/î�ô^÷\ð�÷�ó�ñ�ð+��ô_óhù/ô^ìhïq�M��ïJð�ì/ö�í�ó�úYõLö�ø}ð�ô^õLò^ì/ö�÷�ð�ý
3 ð\òPî�ír7�ô^í_ò®ö}óhò^ð«ò^ø�ì/òPì í���ð\÷�õ87�÷�ìhò_õLóhös��ì/ò^ò_ð�ô^öÔõLí'ìhÿ8�
��ì���í-��ìhô_ìhïJð\ò^ð�ô_õPk\ð�ñ��MõLò^øSô^ð\í��9ð�÷�òBò_ó�ì�ö�î�ï��9ð�ô ó{ú±ì/ò^óhï�õL÷
��ô_ó��9óhí^õLò_õRó/ö�í�ó/ô�ð�ûhð\ö�ò_í�ý $ ö'óhî�ô�í_ò^ì/ò^ð�����ìhí_ð�ñ3ïJó�ñ�ð�ÿB�)ì/ö��
ó��}í^ð�ô_û�ì���ÿLðQí^ò_ìhò^ð ÷²ø}ìhö�ù/ðwõLíS÷�óhö�í_õLñ�ð�ô^ð\ñ
ò_ó>��ðQìhö3ð�û/ð�ö�ò�ý

þ ø�ðMï�ð�ìhö�õLö�ù0ó�ú=t/ó���í_ð�ô^û�ì
��ÿLðFt�õLí ø�ó���ð�ûhð\ô ì��#�}ÿRõL÷�ì/ò^õLóhö�ñ�ð��
�9ð�ö�ñ�ð�ö�ò\ý $ ö�ò_ô^ó�ñ�î�÷�õLö�ùuìwù/ð�ö�ð�ô_ìhÿMó��}í^ð�ô_û�ì���õLÿLõLò��
÷�ô_õLò^ð�ô_õRó/ö
ïJì��4ù/ô^ð�ì/ò^ÿ ��õLö�÷\ô^ð�ì/í^ðBò_ø�ðBí_õ k�ðBó{ú)óhî�ô ï�ó�ñ�ð�ÿB�hò^ø}ð�ô^ðGúlóhô^ð���ð
÷Gø�óhí_ðMò^ó�ÿLð�ì�û/ð�ò_ø�õLí ò^ì/í���ò^ó4ò^ø}ðMõRï���ÿLð�ïJð\ö�ò_óhô�����õRö�ò_ô^ó�ñ�î�÷��
õLö�ùwò_ø�ðJ÷�ó/ö�÷�ðF�}òJó�ú?�}ô^ó��9ðQïJð�ò_ø�ó�ñ�í�ý>	ÔïJð�ò_ø�ó�ñ / õLí�ì
��ô_ó��9ðdï�ð�ò^ø}ó�ñ�õ°ú�u

v$ñ�î}ô^õLö�ùBõLò_íYðR��ð\÷�î�ò^õLó/ö�ò_ø�ð�í_ò^ì/ò^ðMó�ú9ò^ø�ð�ó���wGð\÷�ò ñ�ó�ð�í@ö�ó/ò
÷Gø�ì/ö�ùhðMõLö�ìhö�ó���í_ð�ô^û�ì
��ÿLð���ì��
�+ú6ô^ó/ï ò^ø}ðBî�í_ð�ô4�9óhõLö�ò ó�ú
û�õLðF��x

v$ò_ø�ð
ðR��ð\÷�î�ò^õLó/öªó{ú / ñ}ó�ð\í?ö�óhòn��ÿLó�÷���ò^ø�ð�÷�ìhÿLÿLõLö�ù
ò_ø�ô^ð�ì/ñ��
ö}óhò3ð�ûhð\öªò_ð�ï��9óhô_ìhô^õLÿ �
��ö�ó/ô3õRò$÷�óhï���ÿLð�ò^ð\í
ì
��ô^î#�}ò^ÿ �����Jò^ø}ô^ó��MõLö�ù�ìhöQð���÷�ðF��ò_õLóhö�ý

$ ñ�ð�ì/ÿLÿP�
��ò^ø�ðSðR��ð\÷�î�ò^õLó/öPó�úMì(��ô^ó
��ð�ïJð�ò_ø�ó�ñ
õLí��9ð�ô7ú6ó/ô^ï�ð�ñ
�MõLò^ø�ó/î�òMõLö�ò^ð�ô_ÿRð\ì�û�õLö�ù��MõLò^øwó/ò^ø�ð�ô4ò_ø�ô^ð�ì/ñ�í�ý $ ö2��ô^ì/÷�ò^õL÷�ð��8ì
��ô_ó��9ðJïJð\ò^ø�ó�ñ'õLí�ì2��ì��uò^óuùhð�ò�í^ó/ïJðSí_ò^ìhò_ðQõRö�ú6óhô_ïJìhò_õLóhö
óhî}òdó{úæì/ö
ó
��wGð�÷�òy�MõRò_ø�óhî}ò�õLö�ò_ð�ô7úlð�ô^õLö�ù(�MõLò^øuõLò^í+�9ð�ø�ì�û�õLóhô\ý
	z��ô^ó
��ð4ïJð\ò^ø�ó�ñ��Mø}õR÷Gø�ô^ð�ò_î�ô^ö�í4ì
��ó�ó/ÿRð\ìhöJû�ì/ÿLî�ðBï�ì��+��ð
î�í_ð�ñ3ò^óuò^ô^õLù/ùhð�ôSì/öPð�û/ð�ö�ò�ý{	Ôí��9ð�÷�õ87�÷�ì/ò^õLóhön��ì/ò^ò^ð\ô^ö?÷�ì/ö
�9ð�õLö�ò^ô_ó�ñ}î�÷�ð�ñ>���QïJð�ì/ö�íBó{úæì/öwõLö�ò^ð�ô�ú6ìh÷�ð��Mø}õR÷Gøuñ�ð�÷�ÿLì/ô^ð�í
ì�ö�î}ï���ð�ô�ó�ú4��ô_ó��9ð4ïJð�ò_ø�ó�ñ�í�ý|@}óhô�ð���ìhï���ÿLð�u

}b~#�������#�U�M���e�M�b����~��M�n�
� �����#����~{�%�����
� �����#����~��L�����
����� �#�#�����������l�e���b����~����l�)���%���%���J�M���M���=�����

�

õLö�ò^ô^ó�ñ�î}÷�ð�íSò^ø}ð��}ìhò^ò_ð�ô^ö3ó{údô^ð\í��9óhö�í_ð�ý þ ø�ð(��ìhò_ò^ð�ô_ö��DíSõLö��
ú6ó/ô^ïJì/ÿ�õRö�ò_ð�ö�ò�õLí ò_ó�ñ�ð\í^÷�ô_õP�9ð�ò_ø�ðB÷�ì/î�í^ðR�-ð�K�ð�÷�ò0ô^ð�ÿLì/ò^õLóhö�í_ø�õ �
�9ð�ò���ð\ð�ö
ð\ûhð�ö�ò " �-ü�ì/ö�ñ?ð�û/ð�ö�ò ! �7üGý $ ö?ó/ô^ñ�ð�ôQò_óPì��U��ÿ �
ò^ø}õRí;��ì/ò^ò^ð\ô^öQò^ó�ìhöSì/ÿRô_ð�ìhñU�Sð���õRí_ò^õLö�ù�÷�ÿLìhí_íF��ò^ø}ðdõLï���ÿLð�ïJð�ö��
ò^ó/ô ïSî�í_ò%7�ô^í_ò�ï�ì��/ðMõRò�õRö}ø�ð�ô^õLò�ú6ô^ó/ï�ò^ø�ð*��ìhò_ò^ð�ô_öJõLö�ò^ð�ô�ú6ìh÷�ð
ìhö}ñw÷�óhö}í^ðFH�î�ð�ö�ò_ÿP�
�)õLï��}ÿRð\ïJð�ö�ò�ò^ø�ð " �-ü0ì/ö�ñ ! �-üMï�ð�ò^ø}ó�ñ}í
ìh÷\÷�óhô_ñ�õLö�ùSò^óSò_ø�ð�ìh÷\ò^î�ì/ÿ)ð�û/ð�ö�ò^í�ý 3 ð�òBî�í0÷�óhö}í^õLñ�ð�ô0ò^ø�ð4úlóhÿ8�
ÿLó��MõLö�ù'÷�ÿLìhí_í�õLï���ÿLð�ïJð�ö�ò_õRö}ùwì3ñ�õLìhÿLóhù>�9ób���MõLò^ø?ì/ö
ð\ñ�õLò
7�ð�ÿLñ�ý þ ø�ð
ì/÷�ò^î}ìhÿ4ô^ðFH�î�õLô_ð�ïJð�ö�ò�õRí�ò^ø�ì/òJð�û/ð�ô��«ô^ð�ì/ñ?ó����
ð�ô_ìhò^õLó/öJïSî�í_ò|�9ð4ú6ó/ÿRÿLó���ð�ñ����Jì
�Mô^õLò^ð4ó
��ð�ô_ìhò_õRó/ö�ý

�����#���> �¡e}��
¢�}����M�
£z}b¤��U�U�b¤��b~��e�>�e���T����~����r�
�#�#�
�������e��¡l �¡e}���¥�}����
¡z��¡e}���¥e}M���
¡4�
�#�#�
�������e��¡l¦e��§���¥�}����
¡n����§���¥e}M���
¡4�

�
���e}T~#£o}b~#�#�%�

¨ �U}�¡{�e���
¡�¦e��§M�%���
�©}b~��#�{�E��¡e}���¥e}M���
¡;ª�£�����¦e��§M�%�b�«�

�E���M�
¬��=���E���#�M�U���=�
�

¨ �U}�¡{­���}��e��¦e��§��%���
�©�l���M�
¬��=���l���#�M�U���=�

®e¯�°�®�±e²�¯�³
´;µB¶�·�®�¸e¯�°�®º¹�²b»�¼#½e¾�¿
À

ÁMÁÃÂ ¹�¾�¶#Ä#½�Å�¯>Æ�¯�®
Ç�½
´z²TÆ�¶�³U¯bÆ«¯b»#®#È
®�²�½�»
¶�Äe²�É#È
®�¯�Å�½�½�³#¯�È�»n¶©ÊÃ¼�È�³UË�¯=¿
ÅU½�½�³U¯�È�» Â ¹�¾AÌ�Ä�¯�®
·#Ä
»l¶|¿ À

ÁMÁ�Í ¹�¾�¶#Ä#½�Å�¯>Æ�¯�®
Ç�½
´z²TÆ�¶�³U¯bÆ«¯b»#®#È
®�²�½�»
¶�Äe²�É#È
®�¯�Å�½�½�³#¯�È�»oËÃÊÃ¼�È�³UË�¯=¿
ÅU½�½�³U¯�È�» Í ¹�¾AÌ�Ä�¯�®
·#Ä
»EË=¿ À

À

Î�Ï(Ð�Ñ#Ò Ó�Ô�Õ#Ö
×�Ø#Ù Ô?Ð�Ñ#Ô+Ø#Ú�Û�ÜeÔ�×�ÔFÐ�Ñ#Û�Ý#Ó�Ö�Ú�ÔßÞáàãâ�Ö
Ï#ÝDäeàãâRå4Î�Ï
Û�Ú�Ý#ÔFÚ
Ð�ÛDÐ�Ú�Ò æ�æ
ÔFÚ+Ð�Ñ#Ô�×�ÔFÐ�Ñ#Û�Ý>Ò Ï�ç�Û�èFÖ
Ð�Ò Û�Ï�ÔFç�Ô�ÏMÐ�ÓFé4ê;Ô�ë#Ó�Ô
Ð�ÑUÔ�Ü�Û�Û�Ù ÔFÖ
Ïìç�Ö
Ú�Ò Ö�ÜUÙPÔ�Ó0Ø�Ö�ÏUÝ>ÓFå�Î�Ï�Ð�Ñ#Ò Ó+ØUÖ�Ú�Ð�Ò èFë#Ù Ö�Ú�èFÖ
Ó�Ô�é
Ð�ÑUÔ�Û�ÜUÓ�ÔFÚ�ç�Ö�Ü#Ù Ô�Ó�Ð�Ö
Ð�Ô�Û�í?Ö�ÏAî%ÝUÒPÐ�ï*ÒPÖ
Ù Û�æ(Û�Ü�ð�Ô�èFÐ+íBÚ�Û�×ñÐ�Ñ#Ô
Ú�Ô�Ó�ØeÛ�Ï#Ó�ÔìØ#Ö
Ð�Ð�ÔFÚ�Ï�òWÓ�Ø�Û
ÒPÏ�Ð�Û�íßç�Ò ÔFê)Ò Ó�æ�Ò ç�ÔFÏnÛ
Ï#Ù óAÜ�óAÐ�Ñ#Ô
Ø#Ö
ÒPÚ;Û�í4ÜeÛ�Û�Ù ÔFÖ�Ï�ç�Ö�Ù ë#ÔFÓ�àBØ�é#Ó�âRå
ô õ0öe÷4ø�ùBú4ûFüBö�÷4û*ý#÷4þnÿ�ú��bú������oö���	

�Ñ#Ô
Ï#Û�Ð�Ö�Ð�ÒPÛ
Ï(ÒPÏ�Ð�Ú�Û�Ý#ë#èFÔ�ÝìÒ ÏDÐ�Ñ#Ò Ó?Ø#Ö
Ø�ÔFÚ�Ð�Û�Ó�ØeÔFèFÒ8í'ó2Ø#Ú�Û
Ø��
ÔFÚ�Ð�Ò ÔFÓ(Ö�Ó�Ó�Û�èFÒ Ö�Ð�ÔFÝ�ê�Ò Ð�Ñ�

Ö�ç�ÖAèFÙ Ö
Ó�Ó�Ô�Ó�Ö
Ï#ÝnØ#Ö�è���Ö
æ�ÔFÓ�èFÛ�Ï��
Ð�Ú�Ò Ü#ë#Ð�Ô�Ó�Ð�Û�Ð�Ñ#Ô�ÔFÙ ÒP×�Ò Ï#Ö�Ð�ÒPÛ
ÏDÛ�í�Ð�Ñ#Ô�æ�Ö
ØAÜeÔFÐ�ê|Ô�ÔFÏJí'Û�Ú�×�Ö�Ù
Ó�ØeÔFèFÒ���è�Ö�Ð�Ò Û
Ï ÙPÖ
Ï#æ�ëUÖ�æ�Ô�ÓlÖ
Ï#Ý Ø#Ú�Û�æ�Ú�Ö�×�×�ÒjÏUæ�Ù Ö�ÏUæ�ë#Ö
æ�ÔFÓ�é
ê�Ò Ð�Ñ#Û
ë#Ð4Ó�Ö�èFÚ�Ò��eèFÒ Ï#æ�Ð�Ñ#Ô?Ö
èFèFë#Ú�Ö�èFó�Û�í�í'Û
Ú�×�Ö�Ù�Ú�ÔFÖ
Ó�Û
Ï#Ò Ï#æ#å%Î�Ï
Ø#Ö
Ú�Ð�Ò èFëUÙPÖ
ÚFé�Ð�Ñ#Ô;Ï#Û�Ð�Ö�Ð�Ò Û
Ï+Ò ÓºÒ Ï�Ð�Ô�æ�Ú�Ö
Ð�ÔFÝ�Ò Ï�Ð�Û*Ð�Ñ#Ô;Û�Ü�ðRÔFèFÐ4Û
Ú�Ò��
ÔFÏ�Ð�Ô�ÝDØ#Ö�Ú�Ö�Ý#Ò æ
×Dé�ê�Ñ#Ò è�Ñ2×�Ö��
ÔFÓ;ÒPÐ�Ô�Ö�Ó�ó(Ð�Û�ë#Ï#Ý#ÔFÚ�Ó�Ð�Ö�Ï#Ý�Ü�ó
Ø#Ú�Û�æ�Ú�Ö�×�×�ÔFÚ�ÓFå
�>Ô�ØUÙPÖ
ÏAÐ�ÛìèFÛ
Ï�Ð�Ò Ï�ë#Ô�Ð�Ñ#Ô(ê|Û
Ú��AØUÚ�ÔFÓ�ÔFÏ�Ð�ÔFÝ{ÑUÔFÚ�ÔDÒ ÏJç�Ö�Ú�Ò��
Û�ëUÓ�ê;Ö�óMÓ�å��=Ò Ú�Ó�ÐFé*ê|ÔDÒ Ï�Ð�Ô�Ï#Ý{Ð�ÛJÝ#Ô���ÏUÔìÐ�Ñ#ÔD×�Ô�Ö�Ï#Ò Ï#æ�Û�í
Ø#Ú�Û�ØeÔFÚ�Ð�ÒPÔ�Ó�Ô�Õ#Ø#Ú�ÔFÓ�Ó�ÔFÝ(Ò Ï�Ð�Ô�Ú�×�Ó-Û�í=×�Ô�Ð�Ñ#Û�Ý
ÙPÛ�èFÖ
Ù�ç�Ö
Ú�Ò Ö�ÜUÙPÔ�ÓFå
�?ÏUÛ�Ð�ÑUÔFÚLí'ë#Ú�Ð�Ñ#ÔFÚ%Ý#Ò Ú�Ô�èFÐ�Ò Û�Ï
Ú�Ô�æ�Ö�Ú�Ý#Ó%Ð�Ñ#Ô;ØeÛ�Ó�Ó�Ò Ü#Ò ÙPÒ Ð�ó*Û�í�èFÛ
×��
Ü#Ò Ï#Ò Ï#æ�ÒPÏ�Ð�ÔFÚ�í'Ö
èFÔ�Ø#Ú�Û�ØeÔFÚ�Ð�ó>Ø#Ö
Ð�Ð�ÔFÚ�Ï#ÓyÒPÏ�Û�Ú�Ý#ÔFÚ
Ð�Û(èFÚ�ÔFÖ�Ð�Ô�Ö
� Ô�Õ#Ò Ü#Ù Ô�Ó�ØeÔFèFÒ���èFÖ
Ð�Ò Û�Ï(Ó�óMÓ�Ð�ÔF×2å
�LÒ Ï#Ö�Ù Ù ó�é�èFÛ
×�Ø#ëUÐ�Ö�Ð�Ò Û�Ï#Ö
Ù=Ó�ëUØ#Ø�Û
Ú�Ð
Ñ#Ö�ÓyÐ�ÛDÜeÔ�Ø#Ú�Û�ç�Ò Ý#ÔFÝ�íBÛ�Ú
Û�ëUÚ0ÏUÛ�Ð�Ö
Ð�Ò Û�Ï2Ð�Ñ#Ö
Ð0Ò Ó�é=Ö(Ó�Û�íBÐ�ê|Ö
Ú�Ô
Ð�Û�Û�Ù%Ö�ÜUÙPÔ
Ð�Û(Ö
ë#Ð�Û
×�Ö�Ð�Ò��
èFÖ
ÙPÙ ó
è�Ñ#ÔFè���Ø#Ú�Û
Ø�Ô�Ú�Ð�Ò ÔFÓ�Ö
Ï#Ï#Û
Ð�Ö�Ð�ÔFÝ�ê�Ò Ð�Ñ#Ò Ï�Ð�Ñ#Ô?Ó�Û�ë#Ú�èFÔ�èFÛ�Ý#Ô
Û�í%Ð�Ñ#ÔyØ#Ú�Û
æ�Ú�Ö
×Då
��� ÿ ������ õ �"!

#%$'&
#å�(;Û�Ú�ÜeÔFÐ�ÐFé*)�å,+ åMï*ê�ó�ÔFÚ%ÔFÐ4Ö
ÙBåPé�-.+4Ö
Ï#Ý#ÔFÚ�Ö*/4îLÕ#Ð�Ú�Ö
èFÐ0�
Ò Ï#æ1�=Ò Ï#Ò Ð�Ô��ãÓ�Ð�Ö
Ð�Ô2)(Û�Ý#ÔFÙ Óyí'Ú�Û
×3
�Ö�ç�Ö>ä�Û�ëUÚ�èFÔ2(;Û�Ý#Ô54Ué

%Û�Ö
Ø#Ø�Ô�Ö�Ú?Ò ÏìÞ Ú�Û�è�å�676�Ï#Ý(Î�Ï�Ð�ÔFÚ�Ï#Ö�Ð�Ò Û�Ï#Ö
Ù8(;Û
Ï�í'ÔFÚ�ÔFÏ#èFÔ
Û�ÏDä�Û�í'Ð�ê;Ö�Ú�Ô+î%ÏUæ�Ò Ï#ÔFÔFÚ�Ò Ï#æ#é�à9
�ë#Ï#Ô:6�;�;7;�âRå

6 & (*åºï*ÔF×�Ö�Ú�Ð�Ò Ï#ÒBé=<�å�Î�Û
Ó�Ò8í�é=Ö
Ï#Ý><ßå=ä�Ò Ó�Ð�ÛUé?-��SÝ#Ô�Ö�Ý#Ù Û�è��
Ý#ÔFÐ�ÔFèFÐ�ÒPÛ
Ï�Ð�ÛMÛ
Ù
í'Û�Ú%èFÛ
Ï#èFë#Ú�Ú�ÔFÏ�Ð@
�Ö�ç�Ö?ØUÚ�Û�æ
Ú�Ö
×�Ó�4Ué�ä�Û�í'ÐA�
ê;Ö�Ú�ÔB/ßÞ%Ú�Ö�èFÐ�Ò èFÔ�CsîLÕ#ØeÔFÚ�Ò ÔFÏ#è�Ô�éED4Û�Ù ë#×�ÔF6�G�é�Î�Ó�Ó�ë#Ô�H�é
àI

ë#Ù ó $ G�G�G
âKJ7H�HMLON�;7P�å

P & (*å�ï*ÔF×�Ö�Ú�Ð�Ò Ï#ÒBéQ<�åbÎ�Û�Ó�Ò8í�ébÖ�Ï#Ý:<�åTä�Ò Ó�Ð�Û#é�-�Ýeä#Þ%Î�RS/T�lï*ó7�
Ï#Ö
×�Ò è?îLÕ#Ð�ÔFÏUÓ�Ò Û�Ï�Û�í äUÞ%Î�RU4UéOV ÔFèFÐ�ëUÚ�ÔWR Û�Ð�Ô�Ó�ÒPÏ�(;Û
×��
Ø#ë#Ð�ÔFÚ�ä�èFÒ ÔFÏ#èFÔ�é�D4Û
ÙBå $ N�X7;�é�Ø#Ø�å�67N $ LO6�H7N(à�ä�ÔFØ#Ð�ÔF×�Ü�Ô�Ú
$ G7G�G
â�å

Y�&)�åE+�å|ï*ê�ó
ÔFÚFéKZ
å4äeå��?ç�Ú�ëUÏ#Ò Ï�é4Ö�Ï#Ý[
#åE(*åK(;Û�Ú�Ü�ÔFÐ�ÐFé
-FÞLÖ
Ð�Ð�Ô�Ú�Ï#ÓnÒ Ï Þ%Ú�Û�ØeÔFÚ�Ð�ó ä�ØeÔFèFÒ���èFÖ
Ð�Ò Û�Ï#ÓJí'Û
Ú��LÒ Ï#Ò Ð�Ô��
Ó�Ð�Ö�Ð�ÔKD4Ô�Ú�Ò���èFÖ
Ð�Ò Û�Ï*4Ué�Þ%Ú�Û�è�å�Û�í�6 $ Ó�ÐLÎ�Ï�Ð�ÔFÚ�Ï#Ö�Ð�ÒPÛ
Ï#Ö�Ù�(;Û�Ï��
í'ÔFÚ�ÔFÏ#èFÔyÛ�Ï�ä�Û�í'Ð�ê|Ö
Ú�Ô�î%Ï#æ�Ò Ï#Ô�ÔFÚ�Ò Ï#æUé*��(U) Þ%Ú�ÔFÓ�Ó�é=)(Ö�ó
$ G7G�G�éMØ#Ø å Y�7 � Y 6 $ å

J &)�å�+ å4ï?ê�ó
ÔFÚFé%Ö�ÏUÝ\(*åºäeåºÞLÖ�Ó�Ö�Ú�ÔFÖ�Ï�ë�é]-.�=Ò Ù Ð�Ô�Ú0��Ü#Ö�Ó�ÔFÝ
)(Û�Ý#ÔFÙ^(;ÑUÔFè��MÒ Ï#æ
Û�íºÞLÖ
Ú�Ð�Ò Ö
Ù=ä�ó�Ó�Ð�Ô�×�Ó�4Ué�ä�Û�í'Ð�ê;Ö�Ú�Ô0î%Ï��
æ�Ò Ï#Ô�ÔFÚ�Ò Ï#æ_R�Û
Ð�ÔFÓ�é`D4Û
ÙBå"67P�é�N�é�Ø#Ø�å $ X�GM�A67;�6�é:��(U)
Þ%Ú�ÔFÓ�Ó�éaR Û�ç�ÔF×�ÜeÔFÚUPT��J $ G�G7X�å

N &Wb å,c�Ö�ç
ÔFÙ ë#Ï#Ý
Ö�Ï#Ý:
�å�Þ%Ú�Ô�Ó�Ó�ÜUë#Ú�æ
ÔFÚFéE-5)(Û�Ý#ÔFÙd(;Ñ#ÔFè���ÒPÏUæ

�Ö�ç�Ö�Þ%Ú�Û
æ�Ú�Ö�×�Ó�e�Ó�ÒPÏUæ]

Ö�ç�Ö0ÞLÖ�Ð�Ñ��LÒ Ï#Ý#ÔFÚf4#é�
%Û�Ö�Ø#ØeÔFÖ
Ú
Ò Ï(Ð�Ñ#Ô
Î�Ï�Ð�ÔFÚ�Ï#Ö�Ð�ÒPÛ
Ï#Ö�Ùg
�Û
ë#Ú�Ï#Ö
Ù%Û�Ïìä�Û�í'Ð�ê;Ö�Ú�ÔS
%Û�Û�Ù Ó;í'Û
Ú

%ÔFè�Ñ#Ï#Û
ÙPÛ
æ�ó�
%Ú�Ö
Ï#Ó�íBÔFÚFå

H & <�å#Î�Û
Ó�Ò8í4Ö�Ï#Ý2<ßå�ä�Ò Ó�Ð�ÛUé�47���#Û
Ú�×�Ö
Ù«îºÕ�Ô�èFë#Ð�Ò Û
Ïh)(Û�Ý#ÔFÙ
í'Û
ÚF
�Ö�ç�ÖìÞ Ú�Û�æ
Ú�Ö
×�Ó�4UéºïU�*Î9�i�S<U(j
ºÔ�è�ÑUÏ#Ò èFÖ�ÙU<�ÔFØeÛ�Ú�ÐFé
ÞLÛ�Ù Ò Ð�ÔFè�Ï#Ò èFÛ�ÝUÒ^
%Û�Ú�ÒPÏUÛ#é*6�;�;7;�å

X & <�å*Î�Û�Ó�Ò8í�Ö
Ï#Ý�<�å+ä�Ò Ó�Ð�Û#ék-'
%ÔF×�ØeÛ�Ú�Ö�ÙFV�Û
æ�Ò èAÞ%Ú�Û
Ø�Ô�Ú0�
Ð�Ò ÔFÓ;Û�íEl*Ü�ð�ÔFèFÐ�Ó�4#é�ä�ë#Ü#×�Ò Ð�Ð�Ô�Ý
í'Û�Ú;Ø#Ú�Ô�Ó�ÔFÏ�Ð�Ö
Ð�Ò Û�Ï�Ö�Ð;Ð�Ñ#Ô
�UÛ�ë#Ú�Ð�ÑDÎ�Ï�Ð�Ô�Ú�Ï#Ö
Ð�Ò Û�Ï#Ö
ÙE(;Û�Ï�í'Ô�Ú�ÔFÏ#è�Ô�Û�Ïh�UÛ�Ú�×�Ö�Ùm)(ÔFÐ�Ñ��
Û�Ý#Ó�í'Û�Únl?ØeÔFÏ�l*Ü�ð�ÔFè�Ð0��+4Ö
Ó�ÔFÝSï?Ò Ó�Ð�Ú�Ò Ü#ëUÐ�ÔFÝ ä�ó�Ó�Ð�ÔF×�Ó
ài��)2lSl�ï�ä#âU6�;7;�;�å

G & �+å�
�Ñ#Ö�ó�Ó�Ô�ÔFÐ
Ö�ÙBå é8oap'qMrts1qTu�vBwEx�qfy�z0{�|�q�}W~�uT��{'|Iz���~
}WvM|Av7��vT�Q~��Q�@����|Ip5qQuM��{'z��,y2v�x�qfyBzi{U�SvT�Q~�uW������p'qTv�{'��|�q
��p5|9z �K{'ziv�w�����|A~.w�w�z%y,~'�={�~�ém(;Ñ#Ö�ØUÐ�ÔFÚ Y é*�{Ò ÙPÔ�ó�é $ G7X�G�å

Toward Synergy of Finite State Veri�cation and Testing

Gleb Naumovich

Phyllis G. Frankl �

Polytechnic University

6 Metrotech Center

Brooklyn, NY 11201

fgleb, pfranklg@duke.poly.edu

Abstract

Finite state veri�cation (FSV) and testing are usually
viewed as competing approaches to software validation.
In this short paper, we propose a technique for combin-
ing FSV synergistically with testing, with the goal of
identifying faults more quickly and with less manual ef-
fort than with FSV alone and more e�ectively than with
testing alone. We propose using information about po-
tential faults obtained during the FSV analysis to direct
selection, execution, and checking of test data, with the
intent of con�rming these faults.

1 Introduction

In �nite state veri�cation, a �nite model of the system
is constructed, usually abstracting away many details,
and the FSV tool (veri�er) explores the state space to
determine whether a given property P holds. The model
is constructed in such a way that if the veri�er deter-
mines that P holds for the model, then P also holds for
all possible executions (and hence, for all possible test
data) of the actual system. In this case, there is no need
to test the system for the behaviors captured by P . On
the other hand, if the veri�er �nds a violation of P , it
may or may not re
ect a property violation in the ac-
tual system. Such violation is spurious if no violation-
revealing path through the system model corresponds
to a feasible execution of the system. Normally, given a
representation of the property violation on the model,
the human analyst (or simply analyst hereafter) has to
decide whether this violation appears spurious, in which
case the analyst has to re�ne the system model, provid-
ing more detail, and then re-run the veri�er. The addi-
tional details may allow the veri�er to determine that
P is always satis�ed or there may still be a violation.
In the latter case, the process continues.
This incremental approach to FSV has several weak-

nesses related to the presence of human factor in the
veri�cation process. First, this approach relies on the
analyst to decide whether a property violation found by
the veri�er is spurious or not, which is time-consuming
and error-prone. Second, the analyst can only review

�Supported in part by NSF Grant CCR-9870270.

one property violation at a time, while our technique
can use information about all found violations at the
same time. Finally, if a violation appears feasible, it is
important to analyze a real execution of the system that
results in this violation, so that the error in the system
can be found and removed. Unfortunately, debugging
cannot be used until the analyst manually identi�es test
data that are likely to produce such an execution.
Our proposed technique uses testing, along with

model re�nement, to address these weaknesses. When a
property violation is found by the veri�er, the following
steps are performed in parallel:

� An automated testing tool uses information devel-
oped during the FSV analysis to direct selection,
execution, and checking of test data, with the hope
of �nding data that shows the violation to be real,
and

� The analyst re�nes the model and re-starts the ver-
i�er. Note that the analyst only needs to pick a
reasonably important aspect of the system to be
modeled during the next run of the veri�er, with-
out having to worry about whether the violation is
spurious.

If the violation is real, testing will sometimes be able to
�nd test data that exhibits this violation in the system.
In this case, the parallel FSV session can be stopped
and a debugging session with the found test data can
be started. If the violation is spurious, thorough testing
of relevant parts of the system may help increase con�-
dence that such is the case, but, of course, will never be
able to prove it. The gain in this case is that the analyst
is able to start a new, more precise, veri�cation session
promptly, which helps to speed up the overall process
of FSV. Thus, from the point of view of the FSV ana-
lyst, this approach saves some manual work; from the
point of view of the tester, this approach helps direct
testing e�ort toward execution paths that are at risk of
violating the speci�cation.
In the remainder of this paper, we re�ne these ideas

further, illustrating with a simple example. Section 2
summarizes relevant background on FSV and testing,
Section 3 illustrates the technique and discusses some
of the issues, and Section 4 concludes.

2 Background

2.1 Background on �nite state veri�ca-

tion

Conceptually, many FSV approaches represent the sys-
tem under analysis as a collection of states in which this
system can be during its executions and transitions con-
necting these states. This construct may be created ex-
plicitly (e.g. [4,6,12]) or implicitly (e.g. [9,15]). For sim-
plicity, in this paper we use an explicit representation of
the state space, although the proposed techniques can
be extended for implicit representations.

Consider the example in Figure 1. The two threads
of control, T1 and T2, that comprise this system are
represented as FSAs in Figure 1(a). State 0 is the start
state in both FSAs. The states representing termination
of the threads are indicated with double circles. The
transitions between the states are labeled with events
in the threads to which they correspond. For exam-
ple, the transition from state 1 to state 2 of thread T1,
labeled start T2, represents thread T1 starting thread
T2. Events a and b represent some events in the threads
that are relevant to the property. Square brackets that
follow some events represent conditions on when the
event is executed. For example, state 2 of thread T1

represents this thread before executing an if statement
with predicate x > 0. Event a appears on the branch of
this if statement that is executed when the predicate
evaluates to true. � denotes an empty event, represent-
ing absence of any events. For example, the � -based
transition from state 2 to state 3 of thread T1 means
that nothing of interest happens on the branch of the
if statement that is executed when x � 0. Note that
we assume that x is a shared variable that is an input
to thread T1 and is not changed by either T1 or T2.

Formally, we can represent an FSA as a tuple
(S; s0;�; T), where S is the set of states, s0 is a unique
start state, � is the set of events, and T is the set of
transitions. We use the notation s1

e
�! s2 to represent

a transition based on event e 2 � from state s1 2 S

to state s2 2 S. A path through an FSA on an event
sequence e1; :::; en from � is a sequence of transitions
s0

e1
�! s1

e2
�! :::

en
�! sn.

In this paper, we assume that FSA-based models of
the threads of control are derived from the source code
for the system. While construction of models based on
high-level descriptions is attractive and has been advo-
cated for FSV [11], since testing is used in our approach,
we need a direct mapping between the thread models
and the executable code for the system.

A property about a software system is a representa-
tion of either desirable or undesirable behavior of this
system. We de�ne properties in terms of the events ob-
served in the system, using FSAs with a special violation
state v. The violation state is a sink: 8e 2 �P ; v

e
�! v.

A property is violated on an execution that corresponds
to the event sequence p = e0; e1; :::, if the path through
the property FSA on this sequence ends in the violation
state.

Figure 1(b) shows a property specifying that on no
execution of the system can event b be observed if by
that time event a has been observed an odd number of
times. For example, the sequence of events a, a, a, b

corresponds to the path 0
a
�! 1

a
�! 0

a
�! 1

b
�! v, and so

violates this property. Note that events other than a

and b do not a�ect this property, which means that if,
for example, event start T2 is contained in a sequence
of events, it does not change the current state of the
property.

A reachability graph represents all reachable states
of the system, to the extent that this system is mod-
eled by the FSV technique of choice. In our example,
each thread of control in the system is modeled with an
FSA, so a state of the system can be represented as an
ordered collection of FSA states, one for each thread.
The reachability graph is a cross-product of the FSAs
for all threads. Figure 1(c) contains the reachability
graph for our example.

Paths through the reachability graph represent exe-
cutions of the system. A path in the reachability graph
is executable if it corresponds to a real execution of the
system. All other paths are spurious. If there is a path
from the start state of the reachability graph to some
state s, such that the property is violated on this path,
s is called a violation state.

Many FSV approaches are capable of checking two
general kinds of properties, safety and liveness. Safety
properties are always �nitely refutable and liveness
properties are never �nitely refutable [1]. The approach
proposed in this paper deals only with safety properties,
since the in�nite nature of liveness properties means
that an execution that represents a violation of a live-
ness property is in�nite and thus cannot be reasoned
about using testing techniques1.
The goal of our approach is to combine FSV and test-

ing to either prove, with respect to a given property,
that no violation states exist in the reachability graph
or to �nd an executable path from the start state to a
violation state of the reachability graph.

2.2 Background on Testing

Whereas FSV primarily aims to prove that the speci-
�cation is satis�ed, testing aims to �nd faults, i.e., to
demonstrate that the speci�cation is not satis�ed. To
test a piece of software, one selects test cases from the
input domain, executes the software on each test case,
and checks whether the results satisfy the speci�cation.
In addition, one might monitor which path through the
program is executed by each test case (or other aspects
of the execution that are not immediately observable) or
might attempt to force execution of a particular path.

Many testing techniques involve analyzing the con-
trol
ow (and/or data
ow) of the program then requir-
ing the test data to execute representatives of certain

1In addition to safety and liveness properties, there are prop-
erties that are neither safety nor liveness, but any such property
can be represented as a conjunction of a safety property and a
liveness property [2]

 [x<=0]

 [x<=0]

T1 T2

a[x>0]

a[x>0]

b

0

1

2 2

3

1

0

input x

start T2

(a) FSAs for the threads of control

0

a

b

b

a

a,b

v1

(b) Property

 [x<=0]
T2

 [x<=0]
T2

b
T2

 [x<=0]
T1

input x
T1

start T2 T1

 [x<=0]
T1

 [x<=0]
T1

a[x>0]
T2

a[x>0]
T1

a[x>0]
T1

a[x>0]
T2

a[x>0]
T1

b
T2

0,0

1,0

2,2

2,1

3,1

3,0

2,0

3,2

(c) Reachability graph

Figure 1: A reachability graph-based example

classes of program paths. These techniques were origi-
nally developed for testing sequential programs but can
be extended to testing concurrent programs [13,18,19].
Testing criteria of this nature often result in a large
number of test requirements, even for moderate-sized
sequential programs. For concurrent programs, the ex-
plosion in the size of the state space makes this problem
even more severe. Thus, the tester needs guidelines for
selecting portions of the state space that should be ex-
plored. In the proposed technique, those guidelines are
supplied through interaction with FSV.

One of the most diÆcult aspects of testing is the or-
acle problem, i.e., the problem of determining whether
the result of a particular test case satis�es the speci�ca-
tion. The use of formal speci�cations can signi�cantly
alleviate this problem, by allowing test results to be
checked automatically [17]. In particular, techniques
have been developed for automatically generating test
oracles from speci�cations written in temporal logics, as
are commonly used in FSV [7,8, 16].

In testing and debugging concurrent programs, spe-
cial problems arise due to non-determinism. A given
test case may expose a fault on some executions, but
not expose it on others, due to di�erences in the in-
terleavings of statements from di�erent processes. If
executing test case t does not expose a fault, it may
be useful to re-execute it many times to check di�er-
ent interleavings. If executing test case t does expose a
fault, it may be diÆcult to reproduce the interleaving
in order to debug the program. In order to deal with
these issues, testing environments for concurrent pro-

grams have been proposed in which the interleaving of
processes is monitored or controlled [3].

3 Using Property Violations to

Guide Testing

When the �nite state veri�er �nds a property violation,
we would like to use this information to guide testing.
There are two ways in which we would like to guide
testing of concurrent systems, by choosing appropriate
test data and by choosing scheduling of relative exe-
cution of the threads in cases where they can execute
independently from each other. The former is a general
problem of testing methods and the latter is speci�c to
concurrent systems. In this section we describe several
di�erent approaches to using information produced by
reachability analysis to guide testing-based search for
property violations.

3.1 Choosing Thread Scheduling

We will assume that our testing approach has instru-
mentation that lets us at any point to force execution of
the current instruction from any of the threads that are
not blocked. (Such instrumentation can be either em-
bedded in the run-time execution environment or done
on the source code level, similar to [3].) We use informa-
tion about the violation states in the reachability graph
to force testing to exercise those thread interleavings
that improve chances of �nding a real execution. To

this end, we introduce the notion of interleaving selec-

tion criterion ISC as a predicate de�ned on the set of
all transitions in the reachability graph. This criterion
evaluates to true if the transition should be explored,
if possible, during testing and false if the preceding run
of the veri�er does not indicate that taking this tran-
sition can lead to a violation state. During testing, we
apply this criterion to all transitions that correspond to
thread interleavings that can be taken from the current
state. If multiple transitions may be taken, according to
the criterion, the testing tool will pick one of them and
thus drive execution of the test case. If no transition
from the current state of the reachability graph can be
found that satis�es the criterion, the testing tool will
backtrack to an earlier point in the execution and pick
an alternative interleaving.

There are two di�erent forms in which veri�ers can
return information about property violations. One of
them is a set of violation states in the reachability graph
and the other is a set of paths to some violation states in
the reachability graph. Suppose �rst that V is the set of
violation states returned by FSV. An intuitive criterion
based on this set is

ISC V (s1
a
�! s2) =

8><
>:

false if 8v 2 V; v is not reachable

from s2

true otherwise.

Consider Figure 1(c) and violation state (2; 2) found
by the veri�er used. Suppose that the value of x was
randomly chosen to be 5 when executing code corre-
sponding to the transition between states (0; 0) and
(1; 0). Consider the point during program execution
immediately after thread T2 has been started by thread
T1, which corresponds to state (2; 0) of the reachability
graph. In this state, the two threads may be executed
in parallel, and so di�erent event interleavings are pos-
sible. One possibility is to execute the if statement
of T1, which means event a, because of our choice of
value of x. This corresponds to the transition to state
(3; 0) of the reachability graph. Since the violation state
(2; 2) is not reachable from (3; 0), this interleaving will
not lead to the violation found by the FSV session, and
so will not be taken during testing. The other possible
interleaving at state (2; 0) is to execute the if state-
ment in thread T2, which corresponds to the transition
on a from (2; 0) to (2; 1). Similarly, out of two possible
interleavings at state (2; 1), the testing run will choose
executing the code corresponding to event b in T2. At
this point, we have detected a violation of the property
with testing.

Many veri�ers are capable of returning a path or a
set of paths to some violation states in the reachability
graph. Suppose that W is such a set of paths. An

intuitive criterion based on this set is

ISCW (s1
a
�! s2) =8><

>:

false if 8w 2 W;w0(s1
a
�! s2) is not a pre�x of w;

where w0 is a path traversed up to state s1

true otherwise

This criterion stipulates that a transition should not
be explored if it cannot lead to execution of a path
in W . Assume that the veri�er returned a violation

path (0; 0)
input x
����! (1; 0)

start T2
�����! (2; 0)

a[x>0]
����! (2; 1)

b
�!

(2; 2). Consider a point of the program execution cor-
responding to state (2; 0) of the reachability graph. If
the if statement of T1 is executed at this point, this
path will not be followed, and so the testing tool has to
execute the if statement of T2.
Intuitively, ISCW is stronger than ISC V in the sense

that following a violation path during testing (if it is
feasible and test data are adequate) always leads to a
violation of the property, while entering a violation state
does not necessarily represent a violation, because the
path taken to this violation state during testing may
be di�erent from any of the paths that represent the
violation.
There may be situations in which ISCW is preferable

and situations in which ISC V is preferable. State (3; 2)
of the reachability graph is a violation state, since the

graph contains the path (0; 0)
input x
����! (1; 0)

start T2
�����!

(2; 0)
a[x>0]
����! (2; 1)

� [x�0]
����! (3; 1)

b
�! (3; 2) that violates

the property. (There is also another violation path to
this violation state.) Suppose �rst that we use this vio-
lation path in the interleaving selection criterion. Since
this path is spurious, no choice of test data will exercise
it. Thus, on each test case, the testing tool will stop
execution because the given path cannot be exercised,
even though these test cases could potentially execute a
di�erent violation. Now suppose that we use violation
state (3; 2) in the testing criterion. Even though none
of the violation paths to this state are feasible, testing
could still �nd a violation by examining a real violation

path (0; 0)
input x
����! (1; 0)

start T2
�����! (2; 0)

a[x>0]
����! (2; 1)

b
�!

(2; 2). Note that this path leads to a di�erent violation
state, (2; 2), but ISC V permits that, because state (3; 2)
is reachable from (2; 2).
Alternatively, suppose that our testing criterion is

based on the violation state (2; 2). Suppose that the
value of x used in our test is negative. In this case,

path (0; 0)
input x
����! (1; 0)

start T2
�����! (2; 0)

� [x�0]
����! (2; 1)

b
�!

(2; 2) can be taken. Even though the violation state is
reached, testing did not �nd a violation of the property,
because at the end of this path the property is in state
1, which is not a violation state. If, instead of a vio-

lation state, the veri�er returns the path (0; 0)
input x
����!

(1; 0)
start T2
�����! (2; 0)

a[x>0]
����! (2; 1)

b
�! (2; 2), testing with

a negative value of x will be stopped early, at state

(2; 0), because transition (2; 0)
a[x>0]
����! (2; 1) cannot be

taken.

start T2 T1

b
T2

2,1,x>0

2,2,x>0

1,0,x>0

2,0,x>0

3,1,x>0

3,2,x>0

a
T1 T2

a

T2
a

T1
a

b
T2

a
T1

start T2 T1

b
T2

b
T2

1,0,x<=0

2,0,x<=0

2,1,x<=03,0,x<=0

3,1,x<=0

2,2,x<=0

3,2,x<=0

T1 T2

T1T2

T1

input x<=0
T1

input x>0
T1

3,0,x>0

0,0,all

Figure 2: The reachability graph modeling variable x

3.2 Choosing Test Data

Consider the problem of choosing appropriate test data.
In general, choosing input data to follow a path through
the reachability graph in such a way that it correlates
with the values of modeled variables is undecidable. In
practice, it may be possible to use symbolic execution [5]
or some heuristics [10, 14] or to use random test data,
aborting those executions that are not exploring the
part of the reachability graph of that is of interest. In
this section we propose an approach for choosing values
of variables that are modeled by the veri�er.

Many FSV approaches are capable of modeling sys-
tem variables and including them in the analysis. In
this case information about these variables (either the
actual values or approximations, such as sets or inter-
vals of values) can be used by testing to choose input
data for this variable. For example, behaviors of vari-
able x in our example in Figure 1 can be modeled by
including the sign of x in the states of the reachability
graph, as shown in Figure 2. Each state in this reacha-
bility graph is labeled (s1; s2; r), where s1 is the state of
thread T1 from Figure 1(a), s2 is the state of thread T2,
and r is the range of values of variable x. In this exam-
ple we consider only three possible ranges, x > 0, x � 0,
and all, which denotes all possible values of x (the lat-
ter appears only in the start state of the reachability
graph).

Suppose that we use violation state (2; 2; x > 0) found
by FSV to drive testing. The simplest approach in this
case is to use the range x > 0 in test data selection, since
we can perform an additional static analysis and detect
that, once selected, the value of x does not change in
this program.2 This choice is even easier if path-based
test criterion is used, because it is only the range of
values of x that appears in the states along this path
that has to be analyzed.

2If x is rede�ned, the problem can be much more diÆcult.

Property

Proved Found a
violation

FSV run Testing run

Found a
violation

Session 1

FSV run Testing run

Found a
violation

Additional
information

Found a
violation

Proved

Session 2

Session 3

Use the previous
violation to guide
analysis

Use violation
 info to guide
 testing

previous
test
cases

Figure 3: The proposed process of simultaneous use of
FSV and testing

Modeling variables in this way in the reachability
graph can help not only in selecting test data, but also in
quickly discarding test data that are not likely to lead to
violation. For example, if a negative value of x is chosen

for testing, then after transition (0; 0; all)
input x�0
������!

(1; 0; x � 0) in the reachability graph in Figure 2 is
taken during testing, we can stop execution of the test,
because none of the violation states in the reachability
graph are reachable from state (1; 0; x � 0).

4 Conclusion

We have proposed a technique for using testing and �-
nite state veri�cation synergistically in the attempt to
verify or disprove properties of concurrent systems. The
process for applying this technique is illustrated in Fig-
ure 3. In our approach, testing and model re�nement
are both used to explore violations returned by the veri-
�er, in order to determine whether those violations rep-
resent real executions or are spurious. Information re-
turned by the veri�er describing violation states and/or
paths to those states is used to guide testing. Test cases
are run in an environment where interleavings can be
controlled and where executions can be aborted if it is
determined that they will not be able to reach given
violation states or execute a given paths to violation
states.

This approach may o�er a more eÆcient way to deter-
mine whether a violation is spurious than model re�ne-
ment alone. In addition, �nding test data that causes
a property violation can be useful for identifying and
removing the fault. We plan to implement our ap-

proach and to carry out experiments aimed at deter-
mining whether it is indeed useful.

References

[1] M. Abadi and L. Lamport. Composing speci�ca-
tions. ACM Transactions on Programming Lan-

guages and Systems, 15(1):73{132, Jan. 1993.

[2] B. Alpern and F. B. Schneider. Recognizing safety
and liveness. Distributed Computing, 2:117{126,
1987.

[3] R. Carver and K.-C. Tai. Replay and testing for
concurrent programs. IEEE Software, pages 66{74,
Mar. 1991.

[4] S. C. Cheung and J. Kramer. Compositional reach-
ability analysis of �nite-state distributed systems
with user-speci�ed constraints. In Proceedings of

the 3rd ACM SIGSOFT Symposium on the Foun-

dations of Software Engineering, pages 140{151,
Oct. 1995.

[5] L. A. Clarke. A system to generate test data and
symbolically execute programs. IEEE Transactions

on Software Engineering, SE-2(3), Sept. 1976.

[6] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang.
Protocol veri�cation as a hardware design aid. In
IEEE International Conference on Computer De-

sign: VLSI in Computers and Processors, pages
522{525, 1992.

[7] L. Dillon and Y. Ramakrishna. Generating or-
acles from your favorite temporal logic speci�ca-
tions. In ACM SIGSOFT Foundations of Software

Engineering. ACM Press, Oct. 1996.

[8] L. Dillon and Q. Yu. Oracles for checking tempo-
ral properties of concurrent systems. In ACM SIG-

SOFT Foundations of Software Engineering, pages
140{153. ACM Press, Dec. 1994.

[9] M. B. Dwyer and L. A. Clarke. Data
ow analysis
for verifying properties of concurrent programs. In
Proceedings of the 2nd ACM SIGSOFT Symposium

on the Foundations of Software Engineering, pages
62{75, Dec. 1994.

[10] N. Gupta, A. Mathur, and M. L. So�a. Automated
test data generation using an iterative relaxation
method. In Proceedings Foundations of Software

Engineering. ACM Press, Nov. 1998.

[11] G. Holzmann. Designing executable abstractions.
In Proceedings of the 2nd Workshop on Formal

Methods in Software Practice, pages 103{108, Mar.
1998.

[12] G. J. Holzmann. The model checking SPIN. IEEE
Transactions on Software Engineering, 23(5):279{
295, May 1997.

[13] P. Koppol and K.-C. Tai. An incremental approach
to structural testing of concurrent systems. In Pro-

ceedings of the 1996 International Symposium on

Software Testing and Analysis, pages 14{23. ACM
Press, Jan. 1996.

[14] B. Korel. Automated software test genera-
tion. IEEE Transactions on Software Engineering,
16(8):870{879, Aug. 1990.

[15] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, Boston, 1993.

[16] T. O'Malley, D. Richardson, and L. Dillon. Ef-
�cient speci�cation-based test oracles. In Second

California Software Symposium, Apr. 1996.

[17] D. J. Richardson. Testing with analysis and ora-
cle support. In Proceedings of the 1994 Interna-

tional Symposium on Software Testing and Analy-

sis. ACM Press, Aug. 1994.

[18] R. N. Taylor, D. L. Levine, and C. D. Kelly. Struc-
tural testing of concurrent programs. IEEE Trans-

actions on Software Engineering, 18(3):206{215,
Mar. 1992.

[19] S. N. Weiss. A formal framework for the study
of concurrent program testing. In Proceedings of

the Second Workshop on Software Testing, Veri�-

cation, and Analysis, pages 106 { 113. IEEE Com-
puter Society Press, July 1988.

Testing 3

94

Test Automation for Object-Oriented Frameworks

Moritz Schnizler, Horst Lichter
Department of Computer Science

Aachen Technical University
D-52056 Aachen

{moritz, lichter}@informatik.rwth-aachen.de

Key Words: Testing, Object-Orientation, Collaboration, Framework, Program Family

1 Introduction
Testing is one of the most important activities in

the software development process. Only a thoroughly
tested program will possibly fulfill the user's expec-
tations. Even a systematic and careful development
process can not prevent the need for final testing, see
for example [Dyer 1992]. Consequently a product has
to pass through an appropriate and carefully planned
test, before it is released to the public.

Test Automation has the benefit that test cases
once developed, can be reused in an eventual regres-
sion test. On one hand, this is essential during product
maintenance, when corrections or changes have been
made and developers have to verify that nothing else
was broken. On the other hand test automation is
useful for testing program families which are recently
gaining importance in form of product lines [Weiss &
Lai 1999].

2 Framework Test Bench
Program families, as defined by [Parnas 1976],

are a set of programs, where it is worthwhile to first
study their common properties, before determining
the special properties of the individual family mem-
bers, also called program variants. In other words, the
members of a program family share the same imple-
mentation core, but actually represent program vari-
ants for e.g. different platforms, application areas and
customers.

Object-oriented frameworks are an ideal means
for developing program families. Actually an object-
oriented framework represents an "abstract design"
[Johnson & Foote 1988]. It comprises many design
decisions and can be extended into a complete appli-
cation. Today many projects use object-oriented
framework technology for the development of pro-
gram families, see for example [Bäumer et al. 1997].

While the use of framework technology increases
productivity, testing the individual members of a
program family remains laborious. So individual
members of a program family are tested with limited
or no reuse of test cases. Considering that all mem-
bers of a program family have the same common
core, this seems to be unnecessary. Test cases, which
retest the common functionality of different family
members, should be easily reusable form one member
to the next.

To tackle this problem, we propose the concept of
a test bench for program families which is adapted to
a particular program family. Comparable to test
benches from other engineering areas, e.g. for en-
gines in automotive engineering, the test bench auto-
mates testing the common parts of a program family.
Furthermore the test bench can be extended for the
requirements of a particular program variant. This test
bench itself is based on a test bench framework, see
figure 1, containing the essential infrastructure for
test automation. To adapt this test bench framework
to the program family under test, test cases, which are
specific for the program family, have to be imple-
mented on top of this framework.

Program
Variant A

Program
Variant B

Program
Variant C

Program
Variant D

Test
Bench
Framework

Program
Variant A

Program
Variant D

Program
Variant B

Program
Variant C

Family Specific
Part of Test Bench

Figure 1 Program Family without/with Test Bench

Because the common properties of a program
variant are implemented using framework technol-
ogy, technically the test bench is adapted to the do-
main-specific framework beneath the program family.
In fact a framework specific test bench is realised. If
a program family is based on more than one domain
framework, their test benches can be combined, as-
suming they are based on the same test bench frame-
work.

Because the test bench concept dramatically im-
proves reuse of test cases, it allows thorough regres-
sion testing what is important for program families
and frameworks. Actually a test bench serves two
purposes: First of all, it is impossible to test generic
elements in a framework having no concrete imple-
mentation. Secondly developers will introduce new
errors when they adapt generic elements for their
purposes. Both problems are alleviated, if it is possi-
ble to make a regression test of any concrete adapta-
tion.

3 Test Cases for a Test Bench
A main issue with this approach is the question,

what kinds of test cases are best suited for integration
in the test bench? In this section we propose some
properties, such test cases should have, and take a
respective look at current testing techniques for ob-
ject-oriented software.

3.1 Test Case Properties

We identified the following properties to be im-
portant for test cases, which can be integrated in an
appropriate test bench:

• Abstraction: We can not test everything. Test
cases should be focussed on the externally visible
behaviour of the framework under test.

• Relevance: While test cases should abstract from
details, they should still be relevant enough to
adequately test the framework's functionality.

• Stability: Test cases should be robust not break-
ing from small changes in the implementation.
Otherwise the test bench approach would be too
costly.

• Scalability: Frameworks can consist of a few
classes solving one problem or hundreds of
classes addressing various tasks. We need test
cases for any granularity and want to combine
them, if it is necessary.

• Universality: If we want to test some functional-
ity, it must be possible to develop appropriate
test cases. It is not tolerable that we can not de-
rive test cases in some situations.

3.2 Brief Look at Current Techniques

Because this approach concentrates on testing
object-oriented frameworks, we want to keep those
issues in mind and take a brief look at current tech-
niques for testing object-oriented software, we found
in literature. Most work about testing object-oriented
software concentrates on testing individual classes.
There have been successful attempts to test individual
classes using techniques from procedural program-
ming [Fiedler 1989], based on state machines [Turner
& Robson 1993, Hoffman & Strooper 1995, Binder
1999] or the abstract data type nature of objects
[Doong & Frankl 1994].

All those techniques have in common that they
view a single class as the central entity for testing.
Within the scope of classes they produce stable and
abstract test cases based on a class interface. But all
techniques do not scale up well for interacting clus-
ters of classes, because the underlying models get too
complex. Another drawback of these techniques is the
fact that they are usually restricted to certain types of
classes and are therefore not universal.

Something we felt to be missing, are techniques
for object-oriented integration testing. We found only
one approach [Jorgensen & Erickson 1994] to test a
complete subsystem that is not limited to a black-box

test of the GUI. This approach is based on so called
atomic system functions (ASF) which can be roughly
described as the path of method calls, caused by some
event at the system border and terminated by some
output of the system.

Starting from the system border, the developed
test cases are more abstract and universal than those
at class level. But the implementation of the system is
still considered, making those test cases relevant for
testing critical functionality. Subsystems do not need
a GUI for testing, making this approach quite scal-
able. A drawback is the stability of test cases, because
they are tied up between the borders of the system
and the internal implementation.

4 Testing Collaborations
In this section we will first explain our motivation

and basic ideas for developing test cases from object-
oriented collaborations, and subsequently how role
modelling supports this effort. Afterwards we will
describe a testing process for our approach and dis-
cuss where tools can help in automation of the in-
volved tasks.

4.1 Collaborations and Testing

When proposing their ASF technique [Jorgensen
& Erickson 1994] argue that traditional software
development by functional decomposition stresses
structure over behaviour which is one of the central
elements of the object-oriented paradigm. They iden-
tify this as source for many problems arising, when
traditional testing techniques are adapted for object-
oriented systems.

While we also believe that it makes usually no
sense to use traditional testing techniques for object-
oriented systems, we have identified a source of
problems in the object-oriented paradigm itself. As
[Booch 1994] illustrates, object-orientation stresses
decomposition into objects over algorithmic decom-
position. As a matter of fact, object-oriented design
methods allow for detailed description of structural
relationships, for example using class diagrams. On
the other hand the behaviour of a single object is fully
specified by its class. But the collective behaviour of
a group of objects comes in second position, if it is
explicitly considered at all. We call such collective
behaviour of a group of objects collaborations fol-
lowing the UML terminology, [Booch 1994] calls
them mechanisms.

The statement, that collaborations are often not
adequately specified, is supported by observations,
which have been made in the maintenance phase of
object-oriented systems [Wilde et al. 1993]. They
identified distribution of program function across
several classes, what is natural for object-oriented
software, without proper documentation as a difficult
problem that makes programs hard to understand.
Because a behavioural description is the foundation
for any test, consequently it also makes programs
hard to test.

Our approach is to base tests on those collabora-
tions that implement the essential functionality of an
object-oriented system. In the case of a framework,
this means developing test cases for those collabora-
tions that define the externally visible and usable
functionality of the framework. In short words, the
extension points of the framework that can be used or
extended by a program implemented on top of the
framework, see also [Riehle & Gross 1998].

Behavioural design patterns, like for example Ob-
server or Chain of Responsibility [Gamma et al.
1995], describe collaborations which have appeared
valuable in various contexts. Collaborations can be
composed like design patterns to achieve even more
comprehensive collaborations. This is also possible
for the respective test cases which can be combined
to test the newly composed collaboration.

We believe using collaborations as basis for test
cases gives us enough flexibility to integrate them
into a test bench. They fulfill the following proper-
ties:

• Abstraction: They are well suited for abstraction
from details, since they can be based completely
on interfaces without touching implementation
details.

• Relevance: Because we concentrate on externally
visible collaborations, they are by definition
relevant to adequately test the framework’s func-
tionality.

• Stability: Depending on the level of abstraction
used to describe collaborations, they are more
robust to change than test cases for individual
classes.

• Scalability: As mentioned above, collaborations
and their test cases can be composed.

• Universality: Collaborations are the essence of
object-oriented systems.

4.2 Separation of Concerns

As [VanHilst & Notkin 1996] state, appropriately
chosen collaborations encapsulate fewer design deci-
sions than classes and are therefore more stable with
respect to evolution. But how do we find appropriate
collaborations? Similar to [Riehle & Gross 1998] we
believe that classes are not well suited to describe
collaborations. A class implements the behaviour of a
complete object that usually participates in more than
one collaboration. For example in figure 2 object m
acts as element in a list of data and as subject in an
implementation of the observer pattern. It follows we
need a higher level of abstraction than offered by
classes to describe the participation of an object in
different collaborations. We found role modelling, as
described by [Reenskaug et al. 1996], is a good way
to separate concerns - in this case collaborations –
which are mangled in one class.

A role model describes a structure of collaborat-
ing objects with their static and dynamic properties.

A role defines the position and responsibilities of an
object that takes part in such a structure of collabo-
rating objects. Role modelling is actually an abstrac-
tion process suppressing irrelevant objects and un-
necessary details of objects. An object's role in con-
text of a given collaboration, described by a role
model, specifies only the necessary capabilities of the
object in the given context.

c/collection: List

obs1/observer: View

m/element,
subject: Data

List of Data

Observer Pattern

Figure 2 Three objects in two collaborations

4.3 Example

Figure 3 shows the UML collaboration view of a
role model describing the observer design pattern, as
shown in figure 2. The role model abstracts from
additional functionality of the object playing the
subject role and possible other objects collaborating
as observers for the same data. On the reverse side
the collaboration view of the role model contains the
information, necessary to describe the message se-
quence for updating all observing objects, in case the
observed subject is changed.

observersubject

1: change()

2: notifyObservers()

4: getData()

3: update()

Figure 3 Collaboration view of role model

Using the information from this diagram, test
cases can be defined. As shown in figure 3, the trig-
ger to start the update collaboration is the method
change() that has to be implemented by the object
playing the subject role. The test case is executed
invoking this method for an object playing the subject
role in a concrete instantiation of the role model, as
shown in the UML object collaboration diagram in
figure 4.

Because an abstract role model is not executable,
we need to create instances of concrete objects for
classes implementing the specified roles. For example
in figure 4, the situation of one object of the class

Data playing the subject role and three prototypical
objects of the class View playing the observer role is
shown. Other test cases may require a different set up
of object instances.

obs2/observer:
View

obs1/observer:
 View

m/subject: Data

obs3/observer:
View

1: change()

2: notifyObservers()

6: getData()

7: getData()

8: getData()

3: update()

4: update()

5: update()

Figure 4 Concrete instantiation of role model

To complete the test case, we need to determine
an expected result to compare it with the actual result
achieved by test execution. There are various possi-
bilities to do so, depending on the goal of testing. An
expected result can be defined by means of structural
changes, for example the creation of a new observer
object, changes in state of participating objects or
parameter values for involved method calls. For the
given example we could check, if all participating
objects represent the same information after an up-
date. Because sometimes we need to determine the
state of an object, the code under test has to be ex-
tended by additional inspection methods.

However, as can be seen in figure 3, the collabo-
ration view of the role model usually gives not
enough information to specify expected results and
therefore complete test cases. On one hand, we could
use informal descriptions to substantiate the role
model, but this would make tool support for test case
generation difficult. Contracts [Helm et al. 1990] are
a more formal alternative allowing the detailed speci-
fication of obligations between collaborating objects.
Another possibility is the use of the UML object
constraint language (OCL) [OMG 1999] to enrich the
role diagrams with additional information.

4.4 Process and Tools

In this section we explain our process to develop
test cases for collaborations and the possibilities for
tool support of the involved tasks. As shown in figure
5, the source code of the program or framework un-
der test is the starting point for developing collabora-
tion based test cases. In the first step the developer
adds information about the roles a class implements
to the source code. Such a role description must indi-
cate, what operations of the class belong to the role
and what are the other roles, it collaborates with. For
example [Riehle 2000] gives some pseudo-Java nota-
tion for documenting such role models that can be
adapted for this purpose. This information is inte-
grated using structured comments, leaving the Java
code semantically unchanged. As discussed above, it
is also necessary to improve the testability of the code
by implementing additional inspection methods to
ease the realisation of more comprehensive test cases.

In a second step the extractor tool uses the given
description of a role models static structure to extract
only those methods of a class which are relevant to its
respective role. Additionally, it analyses the code of
the implemented methods collecting information
about its dynamic behaviour – its collaborations. Both
types of information are combined into an internal
representation that can be used by other tools. For
example in a third step, a visual editor allows visuali-
sation of the extracted role model using for example
UML representing its static structure and its collabo-
rations. Further it allows the definition of additional
constraints for the represented collaborations using
OCL or a similar enhancement to the UML easing the
development of test cases.

Test Case
Code

Role Model
Extractor

Annotated
Source Code

Internal
Representation
(Role Model +
Collaborations)

Visual Editor Test Case
Generator

Developer

Test
Framework

(JUnit)

dependent on

1

2
3

4

Tool
Input/
Output

n
step

Figure 5 Testing Process

Another tool that uses the internal representation
of the role model is the test case generator. In a fourth
step, it assists in the definition of test cases for the
different collaborations of a given role model. For
example, this tool suggests available collaborations,
for which the tester can then create test cases by pro-
viding appropriate preconditions and expected results.
Especially this tool assists in the set up of the neces-
sary configuration of object instances for a specific
test case. The test case generator is closely related to
the test execution framework that finally executes the
developed test cases. It generates Java code for the
test cases and additional set up code according to the
extension points of that framework.

One possibility for a test execution framework is
the JUnit testing framework [Beck & Gamma 1998]
that offers a simple, but flexible approach to imple-
ment and execute tests. In fact, in the end this frame-
work is the test bench, mentioned above, while the
test cases developed according to this process and
which make finally part of the system under test as
executable code are the program or framework spe-
cific part of the test bench.

5 Conclusions and Outlook
In the preceding sections, we showed that test

automation makes sense for the development and
maintenance of programs, and especially for program
families. For this reason, we proposed our model of a

test bench for object-oriented frameworks, the basis
of program families.

Following the need to realise test cases for a test
bench, we examined the applicability of current tech-
niques for testing object-oriented software. We
showed that most of them depend too much on im-
plementation details and scale up badly for clusters of
collaborating classes. In contrast, we proposed the
development of test cases focussing on object-
oriented collaborations which can be specified using
role modelling. We showed, how role modelling can
be used to abstract from too many details and to sepa-
rate concerns between different collaborations. While
we showed that it is generally possible to develop test
cases using role models of collaborations, it was also
mentioned that, especially for automation of test case
generation, more powerful means to specify obliga-
tions between roles have to be used. Currently we are
evaluating different possibilities for introducing ad-
ditional constraints into role models of collaborations,
making them more suitable for test case generation.

Finally we described a process and associated
tools for test case development and test automation
according to our approach. After implementing some
experimental versions of the test bench approach
using the JUnit [Beck & Gamma 1998] testing
framework as test execution framework, we are cur-
rently developing prototypes of the mentioned role
model extractor and test case generator tools to gain
more knowledge about the advantages and limitations
of our approach.

References

Bäumer, D., Gryczan, G., Knoll, R., Lilienthal, C.,
Riehle, D., Züllighoven, H. (1997): Frame-
work Development for Large Systems, Com-
munications of the ACM, vol. 40, no. 10, pp.
52 - 59, October, 1997.

Beck, K., Gamma, E. (1998): Test Infected: Pro-
grammers Love Writing Tests, Java Report,
vol. 3, no. 7, pp. 40 - 50, July 1998.

Binder, R. (1999): Testing Object-Oriented Systems:
Models, Patterns, and Tools, Addison-Wesley,
1999.

Booch, G. (1994): Object-Oriented Analysis and
Design with Applications, 2 ed., Benjamin
Cummings, 1994.

Doong, R.-K., Frankl, P. G. (1994): The ASTOOT
Approach to Testing Object-Oriented Pro-
grams, ACM Trans. on Software Engineering
and Methodology, vol. 3, no. 2, pp. 101 - 130,
April 1994.

Dyer, M., The Cleanroom Approach to Quality Soft-
ware Development , Wiley,1992.

Fiedler, S. P. (1989): Object-Oriented Unit Testing,
HP Journal, vol. 40, no. 2, pp. 69 -74, April,
1989.

Gamma, E., Helm, R., Johnson, R., Vlissides, J.
(1995): Design Patterns - Elements of Reus-
able Object-Oriented Software, Addison-
Wesley, 1995.

Helm, R., Holland, I. M., Gangopadhyay, D. (1990):
Contracts: Specifying Behavioral Composi-
tions in Object-Oriented Systems, ACM SIG-
PLAN Notices, vol. 25, no. 10, pp. 169 - 180,
October 1990.

Hoffman, D., Strooper, P. (1995): The Testgraph
Methodology: Automated Testing of Collec-
tion Classes, JOOP, vol. 8, pp. 35 - 41, No-
vember/December 1995.

Johnson, R. E., Foote, B. (1988): Designing Reusable
Classes, JOOP, vol. 1, no. 2, pp. 20 - 30; 35,
June/July, 1988.

Jorgensen, P. C., Erickson, C. (1994): Object-
Oriented Integration Testing, Communications
of the ACM, vol. 37, no. 9, pp. 30 - 38, Sep-
tember 1994.

OMG (1999): Unified Modeling Language Specifi-
cation, Version 1.3, June 1999.

Parnas, D. L. (1976): On the Design and Develop-
ment of Program Families, IEEE Transactions
on Software Engineering, vol. 2, no. 1, pp. 1 -
9, March 1976.

Reenskaug, T., Wold, P., Lehne, O. A. (1996):
Working With Objects, Manning Publications
Co., 1996.

Riehle, D., Gross, T. (1998): Role Model Based
Framework Design and Integration, Proceed-
ings OOPSLA '98, pp. 117 - 133, ACM Press,
1998.

Riehle, D. (2000): Framework Design - A Role Mod-
eling Approach, PhD. Thesis, ETH Zürich,
2000.

Turner, C. D., Robson, D. J. (1993): The Testing of
Object-Oriented Programs, University Dur-
ham, Technical Report TR-13/92, February
1993.

Weiss, D. M., Lai C. T. R. (1999): Software Product-
Line Engineering - A Family-Based Software
Development Process, Addison Wesley, 1999.

Wilde, N., Matthews, P., Huitt, R. (1993): Maintain-
ing Object-Oriented Software, IEEE Software,
vol. 10, no. 1, pp. 75 - 80, January 1993.

VanHilst, M., Notkin, D. (1996): Using Role Com-
ponents to Implement Collaboration-Based
Designs, Proceedings of OOPSLA '96, 1996.

���������
	��
����������	������������������ �"!#	�� $%�&�(')!+*,���.-/�0*�	�� �21
35476 829:3<;>=>?�@BA#@�C�D�EFA+G
@�H:6IA+9+G"A+JK4

LNM(O�PRQ�S&T#UWVYX[Z XRO\M]N^(_I`�aRbdc7egf%a[^�h iYj kml\n+o�p�q+rRsItmn(l\uwvyx�z
{}|�~��(�y�%���R���(|���|��&���������
�����
���g����|��\�

�������\�����I��� ���[�d�
 �¡R� ���(�}���� g¢g£}�}�g���
�
¤}¥}¦g§�¨
©«ª,¬7­¯®�°7±g®�²«³µ´�¶�°�·:¸
¹I­

ºµ»%¼g½�¾W½�¿}ÀgÁ�»%Â�½�ÀgÃ}Á�Â�Äg¿RÅ�ÆÇ½�È�Ã É�Ê(ÈW½�É�¾�Â
Ê

ËÍÌ�Î�Ï}Ð�Ñ7ÒgÏ
Ó�Ô�Õ×Ö.Ø7Ù ØBÚ�Û�ÖÝÜ
Þ�Þ&Ù ÛyÕ[ßgÚWÖàÙ�áâÙ Ø
Ø
Û}ã
Ù\ä�Ôæåçã
è×é�ê�ë�ìRíîìïë ðòñ[ìïó\ô
õïö�ð èÝê ÷øñ�ê�èçñ[ì�ô�ùúñïû�ðòñ�ê}ü+é�ý�ó\þ
è�ÿ����
�����	��

�����	������������������������� �!
 "$#��$
	��%'&!�(#)�
*,+$-/./0'1 0'./2�3(0'4	5$672�5�892�:�3(4�;<2=3(0'.>2/?@?BADCE-�5F-�G�2�3(-�*H3I-�*�3
J>K,LNMEO�K�PRQ=S�JTQVU'O/P,UWP�X�K,LZY[U)U@\]O=^
O_X=`�U'OVUBaEO7X_\>bcYF\�S�O�S[U
d�eEf�g�hji'g/k i l�m!n�goi'g/k i!f�h,pNq�g�h�ksr_t>qEg�hWiunEgvk wEg_r�pyx(pyr_z�i@put�e
{/|/|/}�~��[�B�����(}�{H���/�y�/|=�(�/���(�>�,��|=~��N�(�=~��@}	��{=�E���F�=~��@�'�
�u�F�<���=�E�����@�	���[���y�F�H�/�	���F�	�F�=�[�o�
�E�
�=���(�> ��,¡£¢!�E�'
¤�¥
¥�¦�§
¤/¨�©�©F¤>ª�«�¬/¬=­¯®B°�¥�±y¬=°²¬�­[³(¬>´µ®B­¶¤·¥
¦�§	³(§	³y¸�¥�¬
¹�º>»'»'¼�½¿¾�º	À�ÁIÂVÃ�Ã[ÄÆÅI¾c¼	À�Ç'È[ÉËÊ7É$½ÍÌ
Î$¼�¹>Ç(Ï,Ç'¹�º_ÄIÇ'Ã[É$Á
ÐÒÑ>Ó�Ô/Õ×ÖÒØ�Ù�Ô/Ú=Û(ÜIÖÞÝ,ß@Ô�à
Û'Ô_Õ×ájÔ/Ó�Û@ßNà�â
ã�äåá!æEÔcç
Ý�è�Ù�Ô/Ú=Û£æEÑ>Ó
é@ê�ëíì�î�ë	ï�é ð(éIñ�ï�òôóEë�õ�ö'ì/÷�ø�ù�éIëûú�ñ�ü ýyþFñÿýuò��Eï�ë���ñ>ú
�����
	���
���	
���������������
������	�������� ��!"�#	��$�%�&���$���#�$'(�)�*�+��,-�#
��.�
/*021$/&3%46587�9�:+02;�/�<�7.=$3�0�4"/*02>81�7"?*/�@BAC= 0D1$E�1$/*0�FG1H@JI�7(1�0
KML
NPO2QSR�T"U�O.VXW�YML.Z.R�[$R�Z.O2\�R�T"]^R�W`_aT�b�L�V*L.bcOdWeO
f g�h�g�i�jCkShClgmah�n�oqp(rsg�tuo(i�v�i�w�t.xXg�i�jCk(n�y&z�{�i.f}|$t�l
~"�C�6�C� ���&�%�6~s�*�2�$���.�$�%�����������)���2�������.�����&�%�6~D�*�������2�2���2�
���(���&�
�������$�����-�
�+���J�)�-�#�%�)�-���-� �)�d����� ������������� ��¡2¢(�)�$���B£d¤
¥%¦(§¨¦d©�ªH«�¬�¥�§
­�¥&§+®�¯
°8±d²´³sµ�¶6·¹¸
º.»6¼�½�¾-¿*¾�½�À�Á�¾�Â2Ã�Ä-Å�À
Æ�¼�ÇBÁ&¼
Æ�Á�¾ÈÃ(É6Ê"ËÌ¼
Æ�Á�À�Í�Á&Â�ÎÏÀ�Á�¾-Â�Ã�Ê"ËÌ¼
Æ�Á
Ð2Ñ$ÒCÓ�Ô%Õ2Ö�×¹Ø�Ù�ÕCÓ�Ú*Û&Ð2Ñ�Ü�Õ+ÝdÚ�Õ�Þ"Ö�ß à�á¨Ödâ�Ú�Ò�Ú�Õ�Ó+ã(Ò�Ñ�Ú&ä
åMæPç.è¨é�ê6ë�ì�íïî"é+ð�ë�è
ñ òôó)ò6õ�ö ÷
ø
ù�ó)ò6úûò"üdýÿþ�÷�ö���� ù��������Bø�ö$÷Gù
	�ù��&÷�ý ù
��ø���÷
���������������������������� "!#�%$&�'�)(*��+),.-.�0/
!�����,����1,���+�2����3���3$5476
8:9�;)<0=�>@?
A�B�C�<�D�>E<0FGF�<�HI<0J�A5K�L�<�D�>M<NLOK�PIQ5RSC�T3<5RU>�PI<
V�W�X0Y�ZE[�\�]^\�_a`%X�Z@Y�[.b�X'`dc�\%`%X0b.e)f�gih�[.VNh^[�cOj�W*\3kIX
l3m�n3o)p"q@r�s�m�n3tum%vxw�yzr�{%oiq"w�y|r�}is�p�o�~�o�yEw0p�o�t#rzt|q�s���r�l�s����u�
���I�E���"�M���7�3�����������5�.���5�.�������S���7�.�������0���7�������
�����
 5¡
¢¤£)¥.�| 5�¦�
 5¡¤¥�§I¨©¥E¨'ª"¥�����«­¬%¡� ¯®'¨'ª�ª¤°%±U²³£N±¦ ¯�
´
µI¶�·�¸|¹@¸|·'º)».¸|¼5½I¾|¿Iº'´S¶�ÀM».¶0´�»�¸�½�ÁIÂ�Ãi¶N»1¸�½Ä´�µ�¸�».¶Å¼¯¹1»|Æ�¶
Ç%È�É5ÇËÊ�Ì"Í�Î0Ï�Í)Ð�Ñ)ÒËÓ¯Ê�Ô�Í�Ê@Í�Ñ)ÕEÖ³È�ÐØ×IÓ0Õ�ÇÙÖ@ÚIÍ�Ñ�È�ÊEÈ|Ñ�Û)Õ|È|Ó0ÐIÖ
Ü)Ý�ÞÙß�à¯Þ�áâÜ)Ý�Þäã�å�áØß�à%æ�ã.ç#èaß�à5ÝIæ�á'é0ê�áNÝ�ß'á'æ&à¯ë�ã�å�á'æ*á
ì7í�î*í¯ï0ð�ñ'òóð@ôzí0õ)í÷ö0õNíøî*í5ù ð"í¯ï0ô7úüû
ý�þzí¯ñÿî���õ
�������
	��
	�������	�������������������������	�� �"!$#�%'&(�����)����	���*+*-,.���/���
0�1/2304235$67298:8�;-<�=�29>/;+6?0�@A=�@�BCBD@�E/;GFIH/J�6�KLB?6�23E�JM@ON
P
Q R
S3T+U�T�S
V�W�T�X�Y�Z
[]\ ^7_�`O`Oa'bO_�c3\d`ea'^�f$^3gOh�^�ikjlgAh+\ej�fm`�_9`/^3an_3oOh�b�p?_9h�^�f
q�r:s�q�t�uwvyx�z|{�}�~�}����
}Os
s�r:s��]}:s�r:��xeuyq
��r�t��
���)�������������
�������)�����3� �����9���e�
���������n�I���'�
�������
�������
�e�� �¡O¢�
£¥¤
¦I§©¨)ª¬«®­��
¯���ª��±°³² � ª�´��+­�¡¶µ·
­�¡O¸) �¡/ª

¹�º®»A¼¾½L¿�ÀeÁÃÂ�Ä7Å3ÆÈÇ�É/ÊOËlÌOÍ�Â�Ê�ÆÈÊOÎnÏeÐ$Ç3É/Â�Ê�Ì�Ä7Ê�Ñ
Ò�Ç�Ó�Í
Ô
Õ�Ö�×�Ø9ÙOÚ�Ø
ÛÝÜDÕ:Û:Ø�Þ-×-ÙeßLÞ�à3Ùeß�á à
ßOØ�âãà9Ù/ÛäÚ�Ø�å9æ:Ù ×+ç�á Ø�âãà3Ù Û
èeé�ê·ë ì�ì9í¥î:ï
ï
ð+ñ�ð+é
ò�òGó¥é
ô:î�õOö�ì
ôäé�ê÷ö�è ìùø4úIûüê�ö�é9í ô:é9ý�ô
þ�ÿ��������	��

������
�����������

������� �"!$#$%��&
&'��	���('������)��%+*
,�-/.)0�0�,213,345-61
48784:9;0�<=.>-�081
?(@�1BA$,21C.)D�<E46F)45-G<;,H<�1
<JIK.>-�0
L3MON�P+Q�RTSVUWLHXYP�UWLKZ3[OQ+\�M^]>LB]WR;]`_a\�Ncb�U`P)SVd^]eP�M^f
g$hHi�j�kEimlon(p=qsr�r$t�u
t
v+wGx:yHy2z�{=|8}�~��
���(���&���G�m�E�(���K�&�
�$�
�`�m�E�(�B���3�m���$�G�����+���/���m�G�&�����3�V�(�������m�6 ��G�5�W��¡+�5�
¢+£H¤E¥>¦;§>¨
§�¦;§`©$¦;§:¤�§>ª$¨
«>¨3£3¬5ª�¤­¬�® ¢5¯$ª�«>°�£3¥²±�§>³�«>´�£�¬5¦µ¬5´�§>¦
¶�·5¸$¹
º&¸$»�·+»G¼�½�¾>¿�½�¾:ÀE¾(Á�Â
Ã(Â
Ä3Å+ÁGÀ(ÆÈÇÊÉGË/Ì�Í�ÎÐÏ;ÑKÒ>ÑKË�Ó(É�Ò(ÔÕÑ
Ö�×3ØmÙ+Ú;Ø(ÛÝÜ�Þ�ß5àsÜáÜEâ�ã5ä�â>å�æ)â:Ü�ß$ç­Ü�è
Ø>è
â:Ü­è�Þ�Ø>èéØ>åêß:ë(ì`â)æ>è
í�îðï)ñcò�ñ�óBô)îEï5õmóKòKí�ñ÷ö/ï)øcù�íÐóHú�îWí�ûGù$úýü�û�î�ò3ñGù÷ò�óÕþ
ÿ����������
	�����
�����������
����������������������� !���"��	$#�ÿ��&%'���)(*�+�-,��+�
.0/
1�2�354�687�9;:�6�4�6=<�:?>�<�@�1"/-9�:�6�A)1-2�4�354�B89;354;CD/
1E>)/"6�@�354�1�4�FHG
IKJ�L�IMJON�J�P�Q�NRLTSDQ�J�P?Q�U&V�WYXDZ?P[V�\�U&]_^TJ�`[V�a'U&SDI+bdce`[J
fMg�hji�k�l8m&nOfoi�k'pqk'rDl�i�l8m&rDktsTf�g�ptm�ktl�u[gwvyx{z=| f
}5~8��~8�;���'���5~��*�����)�K���j}{������}5�*�T}�~&���*~&���;�"����~"�'�?}M���?�
�������������+�5����� ���D ��+ &��¡+¢��+�� &��£�¤?¥§¦��� -¢©¨«ªD�)�"¬&�"¡��� ���ª�­'�
®"¯±°³²�´?µ¶®-·?µ�°o¯�¸+¹Kµ�º�®�»&¯;¼�½-µ�¾)®�µ�¿�À
ÁÃÂTÄjÅÇÆ?ÈÊÉÌË�ÍÇÎÊÏ=Ð
Ñ³Ò?Ó�Ô5ÕyÖ[Ö?×ÙØOÚ�ÛÌÜ�Ö�ÝÌÓÞ×�ßÇØà×�ØOáÇØ�×�ÓâÖ[ãåäÇÖ�×�ß
æ�ç�è�é�ê�ë8ê�é�ì+í"ê�î�ï'ð�ñ�ì�æKè�ò�í�è;æ�í"ê�ï?ó�ôTõ÷ö�è+ø5è�ñ*ùúê�ï�ë�î�ø�û�ì+í"ê"î�ï
ü"ý5þ�ÿ��������	�
����
�ü�
�������
-þ���
�������������þ�� ��
��!�"�����#�$�%�	��
&���
'�(*)�+ , -�-�.0/�1324-�5	/�5	, 6$78/ -9,�2:5	, -�5�;�1=<3.?>A@=;�+�@B@3/ -
C�DFE�GIHJC�H�K�L�E�M�MONQP	K!R�S
TVU�GWK LWC�U%TXC�HJL�YZH&[�\
M�U�[]U9L^C$E�C$H�K�L=T
_#`�a!bFcdb	eJfhg�i9eJgIfjc�fXc�khlJc�i*e�bnmok�pOq^p&e�crbXe�m9e�ctsum�i*`^p&q�c�v
wyx�z{xn|y}�~8}����*��~��%�
���u�
���*�j���
���	���	� ���3�I�*� ���	�I�F�h���=���=�I���8� ����� �I�8�*������ V� �¡�
¢
£F¤9¥�¤9¦j§�¨
¦j¤�£�¤�§9¦F©9ª�¤�¦F£"«�¬^­¯®^­ °^­O±!­ ²�­$³9´�­$³!³�­$³9µ�­$³9¶�­·³V¸
­$³�¬ ¹Fº
»½¼
¾W¿�À�Á�ÂÄÃ�Å^Æ	Ã=Ç�ÈV¾QÇ^É�Ê�¼
¾�ÈV¾ZË�Ç Æ	Ì=È�¼
À%È]Í=¾�¾�Â�ÊhÇ
Î^Ï�Ð
Ï�Ñ�Ò ÓÕÔ�Ï�Ö�×
Ò�Î�ØÚÙXÒIÛ0Ü�Ï�Ý=Ï�Û�Þ�Ö�ß�Ý
ÜÕÞ�Ø*Ï�ÖàÒ�ÙàÖhÏ�ØFÖ
á�â�ãFä�ã*å�ãFæ�çuä9è�éOçuä�ãêá�â�ë�ëJä�ì�âîí9è�ä�ãXè½ãXï�éOè$ä�ð%å ñ
â�ãFä�ì�ï ò
æ%ó
ô"õhöO÷�ö&ø�ùûúXø�ô�ø�ùdüuô�ý9þ�öO÷�ùûÿ����������jù
	��jù�úFù9÷!ø$ô9ø�ö
��÷��!õ�øJþ�ù
�����������������������! "��#�#
�$����%�&'��(�)*�+�
����,-��.0/
13254$687!6:9-;<7=4$6'68>�?@9�A
BDCE4GF:4�AIHJ7K;<L�4�A�MN68O�H+AIA�PQ7I>�H07R;K6
S
T�U-VJW:VYXZU�[$\-]�^`_�VRW8V+]�aJTIb<c-V+]edgf"V
hiT�V�XZTkj+a�XlV�X
m

npoRqsr�tvuZw�x*uyr@q@xJwzx*t|{�}|~K����w��:q�x*uyq��|�vw@q@x
�=~
�
�������0���=�J�k�
�3�<�N�l���I�0�K�I�@�N�K���I���3���@�g�k�s�E�0���Y�������0�
�����Z�"�

�D�'�¡ £¢J¤�¥§¦�¨+©"¨+ªJ«K�R¢��­¬E®��¯�:°�±�²
¨³°�¤G«�´�¨gµI�"¬E¨+ª�°
©"°
ª+¢J«�°
®s¤
¶J·-¸$¹�º$»:¼�½�¾À¿�Á�ÂJ¾£ÂJ·�ÃK¶
Ã�½
º$·g¶J»8ÂY¸�ÂJÃ�Â+Ä
ÃKÂ�¸�Å

ÆÈÇ�É'Ê�Ë�ÌNÍIÎEÏ�Ð*É+Ñ£ÒKÉ$Ð8Ò­Ó�É0Ô�ÉJÕ:Ï0Ò�ÖI×sÔ�Ø�ÉJÒ
Ç�×�Ñ�ÐYÑ�ÖIÙZÙ"É0ÕÚÖ<Ô
Û
Ü�ÝgÞ+ßsàÀá�âlß$à§ã�ä*Ý�ä!à§å+æ�Ý�çEÝJÛIè�Ý�ÝJéDÛ
Ü�Ý�ä*ÝgÞ+ßsé�êZë�ãIÞJÛ�ã<é-ì
í�î�ï¯ð+ñJò�ó<ô-ð$õÚöJ÷�øÀò
ù�ð�ú
ðJô�ð+ú�í�û¡û"ísü"ý§ö+ú�ó�õ8ýÿþ��Eís÷�� ù�óIñJù
������	
������
��������������������������! "�!�$#����!���%������	
�&����
!���
')(�*,+.-�/0+21�-&3�-&*54&+.6�(�38794�/:-�;<(�3"=?>�@"/,7�*5(�4�;!A$BC6$3�+D(
EGFIHKJML�E.NMO!H�PRQ�N�S%T5U&VXW:Y9Z[U�\?E�]�H�S5N�E�]�L&E^P0NM_a`bH�cKE�]�Ned�S:N
f�gihkj�l&m:l�hknDo&m5p.q0n.p.h<q�o�r�s�o&t�h�o�quf�gIn�j�o<q0nDlknDo�qvpGtwn�j�o
xzy�{}|�~M���M������~��8���������.�"���k��~����X�R���M�:~����9~����
�K�&�����!�����I���K�&�����!���� ¡���
�������!�u¢&£��
�����M¤$¥§¦�¢&¥0¤�¢�£!��¨
©«ªk¬�­¯®)°�±w²�³�´�µ�¶·².³9ªM²wµ�¶�¶M¸¹²�´¹º�´!¬�µ:²�»0¼�ºM²"²�¶�µ:²
½�¾�¿�À9¾&Á�Â�¾�½uÃRÄ�ÅKÆ�Ç�¾"È�Â&Æ�À9È�ÉeÊ9¾kÇ�È&Ë�Ì�Ä�ÅbÄ�Ã
È&ÁÍ¾kÁ�Æ.ÌGÆ�Î
Ï,Ð9ÑMÒ¹Ó�Ô"Ó�Ò�Ô)ÑkÕ�Ö�×MÔ)ØÙÏ�Ó�Ô.ÐÛÚ�Ñ�ÑkÕÜÑMÒ�Ô�Ó�ÔDÓDÑ�ØwÝÞÔ�Ð�Ñ�Ø�Ñ
ß�à�áGâ�ã!ä!åzæ[ç0àéè�æMå:àkä,ã�êiå)á.æ[á.àëå�ì�ækíMà§à&î�ì�ï�ã�ç0æ[á�ð�ã�ê9ñ
òëóMô[õ�ök÷�ø)ù�ú0û.õ&ü�÷Dõ�ý¡þ0ÿ9þ0÷Dõ��vþ��kú:õ�� õ����Iþ
	�ûG÷Dõ�ý ÷Dù�	9þ�õ
��
���
�����������������������
�� ���!��"#��"%$%��&'�(� ��
�)+*,�-� �-./
0"1)32
4�5%6
7�8:9<;>=%8@?-ACB%D:A�8 EGF(HI7>F�?-=KJ@A>L
M0E�ENM08'OP?QEG7�E�ACR�J@7C?�A>9
SNTCUVS�W0X,Y@Z\[]X_^C`1a-T>b�Sdc�UeUfSGg�SGThWNUji/T>k�W0X'T>ilgCUmS�n'T
o�pCqsr,tvu'w�x�t�pCuyp/z{t(xN|}w�x�x0~ft�r/��xN���'w��v�,�1|������G���G���d�����
� ���V���������������/�]�#� �����C�(�/�-�
���N�>�
�1�%�N�% -� �¡�1���-�¢����£Q�� -�f¤(�
¥�¦�§�¦�¨1©Nª�¨-«,¨�¬ ª�¨�¬%¦¡­'¨�® §�¯/°�±C²3²f§�¦(®,¨�²3¦0® §�¬³¦0® ¨µ´�±C¬%¦0²f±%¶
·d¸/¹>º�»1¼½¹¾·-¿�·�ÀG¿(¼NÁ/Âd¿(Á¾¼
Ã1Ä
ÅsÆ%Ç�È�ÉËÊ,Ê/Ì_Í'Î1ÏÐÎ�Ñ-Æ1Ì
Î%ÇIÆÒÌ
Î%ÇQÌÓÇdÔ:Õ�Ì�Î×ÖVÊ�ÑØÌ�ÙÐÎ
Ú�Û#Ü,Ý0Þ�Û�Þ�ß�à�á�à�Ú0âCß�à(ã,á-àäà(åfá�æ,Þ-åVçQÞ1çËæ á�å
Ú�â>è,çsçVÞ�é>è,Þ�ß ê�Þ1ç
ë¾ìîí�ï�ð-ï�ñ�íóò,ð�íVñ�ô�õ¾ö,ë1÷�ïvø ñ]íGö ñ�ù�ú(ìNú(ù�ð-ï0ú0ë>÷:û%üýø%õ ídþ�ÿËð�í��
�������	��

��������������������
���� �!�#"$���%� &'��
(�)��*	
+�-,����!�/.$�%*�021
324�576�829�4;:�<�4;:!479=:>9+8@?�:!4A?B9DC$4�E�4GF=6G:!47H�326%9�4�HI8�J2K�E
L	M�N�O�M�P@Q�M%L�R STL+U!V�U!M7L(SWR%XTU�Y�MZR%[/\�M�QGU!L�]_^!P#V�` `ba�UBa�R%Pdc
egf7h�iBj�k k%lnm@o�p+q�r)q�o7hTs-t@o�l�t�o�p-l�t@oDq�u>v�w�o�uxo�y lBf�lBq�k%y{z�h
|~}��~���d�)�����W�����������W�	��}������>���!���!�~}��	������}����~���=�
���{� �b���	�������+���$�����d�%�=���%�+�!��� �������B 2¡G� �¢�d�£�W¤��
¥�¦>§�¨�©G¦�©�ª «!¬�«B¥�­�ª~®°¯!«T±�­ ©7²³²�­A´$µ¶§$·=­ ±�¸�¹/¥�ª@º#¬»«!©7²+«
¼7½�¾À¿@Á�½ÃÂ)Ä7½ÃÁ/Å/Æ�Ç(ÈBÁ�É�È{Æ/Å�É	ÁÊÈ�Ç@Å�È{ÁGË Á/Æ�Ì�ÈBÁ�É°È�Ç$ÁÊÈBÁ�É�È{Å�Í@¼
Î�ÏdÐ�Î�Ñ�ÒÔÓ!Ï~ÐÖÕb×%ØGÐ�Î�ÓÚÙ)ÒÜÛ�Ó!Ó!Ý�Þ�×2ß�ÓWÐáà~Û�â�ßdÐbÒãÛbÒ�Þ�Ó
ä�å	æ�ç2è=é�äBé�ê�ç2è
ë�ì�ä�í
ì�ì�çîè+ä!æ�ä!ì7è>ä!ê¶ï ì�ä!ì�åWð�éÀç�ì»ä�ñ�æ�äÊä�ñ�ì
ò/ó%ôWô+õ�ò�ö_ö�ô+÷�ø�ù=úÀö�ú�ó%ø�ù-÷�ô+õ
öB÷�û�õ�ø;÷�ø@ü�ö�ý@õ(ò/ó%ôWô+õ�ò�öÃù+öB÷�öBõ
þBÿ��������	�
���
�����
�	���������������	���
�7ÿÚÿxþBÿ����	���	���xþ��
�����
�
 �!
"$#� &%' &")('!
%+*, -#,.
"/(/021�02()%' �0�3�465
798�798;:=<$>@?
ACBDA�?6EGF+A�HJILK+M$EON�>@PRQS>@N�F+A�IUT
V�WGX�Y�Z�[�Z�Y�\)],Z�^`_GacbG\ed+Xefg]CXed�],Z�_6hjiGd+XkdlZ2_-[m^`nmop\)],Zc^`_
q�r/s�t2u
r�qwv�syxkz|{R}m~6r���tcvCtc��{/�ctcxe�w�,x�{�}'}Dtc}��S��r�}���t��
�6�
���
�'���C���C�S���L�C�
���)���,�����	�&�������c���6�y�)�@�������&���
�
�D�����6�2�
���¡ 	¢����e£¤ /��¥�¦�§
¥�¨)©&ª,©&¨� 	�c©&�e«6¬�­6 �¦D¥�®¯��¥�¦m�c©�«@°���±`²y�e¢@°e±
³&´
µ·¶+µ/¸�¹)º�³�»c¼�¶¡½�¾¿³&´6µ·¶mÀ6µ�¼�»c¾C»c¼�¹)³c»c½kºÁ¾m½kÂ�¸�¹�Ã�»�¶�¸¿Ä
Å`Æ-Ç�È�ÉcÊCÉ�È�Ë/Ì�É�ÍeÎ-ÏcÐ-Ë�Ñ+Ç�ÒlÌ,ÇeÑ�Ì�É2Î
ÓÁÉ2Î6È�Ô�Õ6Ò
Ç�Ñ�Ì,ÇeÑ�Ì�È�Ë�Ñ+Ç
Ö`×	Ø@×'Ù�Ú'Û&Ü�Ý�Ø¿Þ&Ù�Ý�ßgàCá
×)â)Ü�Þ�Ü�â�Ú'Û&Ü�Ý�Ø
à�Ú'Ø@ã�äcÝ�Ù�Ûc×�à�Û9Ý�Ù�Ú)â)å�×�à
æ`ç	èmé�ê@ç�æ�ëcè�ì�íïîCð6ç�ñ/é&ë,é&ñ�ò	ó&é&ì�ô6îöõø÷@ç	è�ç'ù
ú�ócç�îmóUè�ç�î�û
ü�ó,î
ý/þyÿ��������6ý/þyÿ��
	���
���
������Dÿ����6ÿ��������cÿ��������6ÿ/þyÿ ý/þyÿ
�! �"�#%$'&�()#�(��+*,(�-.#�/10�*203/�4% �03�!5.(�0657 �#�(� �085:9�;�085�/�<6&�=>085:9
?2@!ACB6D�EGF�HID�J�KLKIM�HON6P:H%F�B6D:QRF�K�EGF�HTS�B3N8B6F3UVS�H�EWK�XYP>Z�@!D[F�\�K
]�^._O`Oa�b2a3`�c%d�a3e�fhg�ijc�]Tk�lmene�dmc%ondpe!qVc%dp_�],r.e!d3stc�]�^._�`%dp]
u:vxwzyh{!|!}�v�}�|!~��p}pun�h�p�h~�wI{!����{�wW�2}3��������{O�Yy���u>�.}3���
�����I���O�I�:�I�p�h�����1�1���p�3�1�I�3�3�����T�
�,�C�3�����G������ 7�%¡���¢�£2��¤%�2���%¡z�Y¥��)�O¦7£� !¡��G§���¤O¢3£2¢�¤O�%��¢3 �¨�©
ª�«�¬W­�®[¯�­�¬G¯�°6±:²�³µ´2«O¶�¯�·�­R¬G¸�­O¹O°3º2°3¹�«I¯�°�»!±½¼R»n®n­�¾�¿.À,·:°3¹%·
Á1ÂYÃhÄ:Å:Æ�Á�ÇÉÈ�Ê.ÁÌË:Í.Ä>ÎLÏ�Á�Å:Ð�ÁÒÑ%Ã�Ä>Ó:ÈÔÈ�Ê.ÁÕÇTÄ:Ö2È�ÎLÑ1×)Á
ØzÙ�Ú�Û�Ü8ØzÙ1ÝVÙ%Þ+ß2àIáãâ1Þ�äÉå3æ�çèß3é�ÙêÝVÙ%ß3é�ë+äìÛ.à)Ù�äîíGë!Ø�ßpÙ�à�ß
ïGð�ñ8òpóêô:ó%õ�ó%öz÷1ò�ñ�ø!õhùúñ8õ�û�ü6ð�ý>ñ8õ�ôþ÷ÿû�ø���ó1öz÷Oô:óÿû%özñ6òpó1ö�ñ�ø�õ

�������
	���
������������������������ �!�#"$�#� %&�'�#���(�)�#*�*+
��,�-��.��&	�� ��/
021�3
4�36587:9�;8<�=�<�>89?0'3-@�0A3&B83!C
;�0'<�D�>AE
F�G6H#I�JKG�L+M�N�HPOQHRN�S T$HPU�IWVPX+S�GYM�Z[T$M�G\T$H�I�J]T�U[T$M�G\T^TP_AM
`�aAb�c d'e$d'c-f!gPd#h�ijd2g$`6b-k#e�lmdP`(`�g#n\f-d#o�p8g$q�e�h�n�r,f&n\s�lutAb-c�f&vA`�b
w#x�y{z!|QwP}'~Qz��!w,���A������x�}P�&x�wRy���w��-z��6y���z!|�y{�8y!|�}���y��
�&�����P�����-�����&��� �8���'�,���-���� �¡��-¢^�P�,£#¤��¥���&�������,£�¤��
¦&§�¨'©'ª�¦-«&¨­¬A® ©�¯�°¥¨R®�±Q¨R®-²�³µ´�¶A®-« ©#ª$©'«-¦&¨P©#·�¯�¸#¬A¦�±�®-²¥¨P®�±�¨'©2¯�°
¹ º�»�¼2½)¾�¿À»�Á�¿ ½8Â8Ã$º�ÄÆÅ�Ç�ÁQÈ'É
Ç�¹ ¿�Â�Å�Ç�½�ÄQÅ�Ê�Å�Ç8Ë�Á�Å�ÌÎÍ�Ï�É
È'Å�Ð�Ç�Á
Ñ�ÒÆÓ)ÔQÕ'Ó&Õ'Ö ×&Ø�Ó
Ù$ÕÚÔ�Û�Ö ×!Ü#ÒRÜ#× Ó
Õ'Ü#Ñ�ÝAÞ�Ó-Ô­Ü'Ôàß�Ñ�Ý�Ö?Ü�ÝâáãÙQä�å�Ô�æPç
èQé ê�ë�ì
íÀîðï'ñAòôó�ï'ñAò!õ^ñAö îA÷�ø,ù+ú6û�î�ü[ú�ý+ò�þ-ûPÿQûPþ�ö ïRûPó�î����+ö�úYò�÷
�����	��
���
����������	��������
���������������������
 �!�#"%$�&('�)�"*$�+-,�.0/
132�4*57698�4;:(4*53<=1*:?>�5%@!ACB%>!DE576F8G<�H�IKJ78�H-8�L�5	:�53<=MNL
O3P!Q?RTSFQ?UWVXU�YZP(Q�[�V(\ZY3Q^]FV_Y=Va`*Y=V![�bdceUW[fO	[N\gc
h	ikj�h	i�l*inm?o�pno q�r(m�stpkj?j�qum�v�w�i�o�xyiei�m�o{zNi0l=j�ie|�q�}7q{|Xpno q�r(m
~������ ���Z�����W� �e���e�N�7~��7���a�F���������e�_~(�n�k�N����~e�7�(���a�
���n�W�������-�����	���*�X�!�����%���������7����������� ���0��¡������������X¢
£�¤�¥§¦�¤�¨�©k¨?ª�«?¨N¬a©n­Fª ©X®=ª=¯
°²±�³µ´e¶n·�¸�¹(º3»�´n¼a·�´e½t¾3¿�¾3· ´�À�¾²Ánº	´�Â�´XÃ�Ã�¸7¾3ÄN»u· ´e½0·�¹T´�Å(Æ�Ã{¹a»Ç·
È%É9Ê!Ë(Ì7Í%Ì�ËaÎXÏ=Ì7Ð?Ñ9Ò�Ó9ÎaÈ�Ê!ÔÕÏ3ÊaÈµÏ=Ì Ñ�ÖÕÓ9Ê!Ë!ÎX×9È�ÊØÐ?Ó(Ù�ÊaËXÏ	Ò
Ú(Û3Ü�Ý�Þ?ß�Ýeàáà?Ýnâ�ÝXã{Ú�ä�åtÝ�Þ?ßæÝ�å§ä�ç�è�é%Ü�ê�Ý�éëß{ç�Ý�ì�Û	ÝXènß Ü�Ú(Þ Ú?í
î�ïeð�ñ�ò ó ï�îZô�õNîNï�ó�öø÷�ù%ò�õ!ùøð7õúò�ô�÷Wó ï�ô�ï�ûNð7ñ�ð�ò�õaûWü�ñ�û�î
ý%þ(ÿ��§þ��������Xý	� ÿtþ�
�����ý
���������7þ��7ÿ���� ý	��ÿ����������Xý��������
���� "!�#%$'&�(�)*(,+-#�./&�01.-23(,4�#%&�#657&98:#; �#�2<��&�(�0- >=
?A@>BDCFE�G;H�I"I"JLK<MFNPO�ORQ�SUTWV�X
YWZ9[]\^[-_<\a`*b�ced:f	g:h6[-_;_ji�b9k:[�fjl1m-_;n^oRg:g�\	p�_�k�`*fq[-h�\a`�grb
s�t�u�v,w9x
y1v,z�{|z�{�t"zat-x3zat�}�v,w�~'v�����z�v,w�u�z�{�t��;�������6���6x�x�za�
�����3�'���3�r���6�����^�������3�6�3�'�6���6�q���	���r�����q�^�'�6�7���:�
�'�6�	�� 3¡£¢�¡£¤�¥§¦�¨��"���6�q¡, <���©��ª�«6�	�¬¢9��¨�«�­:¡�®� �¯'°L«6�	����±r²9®-¤
³�´�µ3¶·µa¸�¹	º�»�¼D½�³3µ7º�¸¿¾À³�´�ÁÃÂqÄ�Å;Â<Ä�ÆÈÇÊÉ'Ë	ÌaÍ�É�ÎÐÏ�Ñ�Ò
Ó<Ô;Õ�Ó<Ô6Ö	Ô�×�Ø�Ù�Ø�Ú�Û-×jÜ�Ù;Õ'Õ�Ú,×:ÝßÞ�à�Ù6Ö�Ö	Û'á�Ú�Ù�Ø�Ú,×�ÝßØ�â�ÔFá�Û�ã'ÔRØaÛ
ä�å9æèç3éÊê6ë�ì�í�ì�ë6î�ïaì�ð�ñ�òUóWô9ê�ï^ê-ç<ïaê�õ"ï�ô9ê�ñöë�ô9ð�ð�ç�ê-ç§î�ï^ê-ç3ï
÷�ørù�ú�ûqü�ý:úþ÷�û<ÿ��^ú�û<ÿ�ø������Rü	�	ú�

���9ø�������ú	��ú���ú���ú6÷���ÿ�ø������
�������! #"$"&%��('$%)"&*+�,%!-/.	��0103254768"$9&'�.	:��;%):��<%�9&68->=�:(6��
?!@BA�C/DFE,GIHJE�K$K7E�KLCME�N8CPO�QSR�T�U/E�NSVWCMOXN�R,C)A!N�Y)Z[C/DJE
\�]_^3`!a�]<^1b�cWd(c7ef\�b�gihj^1k�a	l_m!a(n7a�\(o�`!a�li`�pjaq`!a�l_`re�]<^3s7a(]8l
t�ujvxw(y{z}|!w	~_|B~S�(y_���$|�����|�|��jw�w�ujv��x�r|��7�/~��$y8�x��w	~�~��
�8���)�1�j�������j�	���&�	�_�&���J���)��� �_���S�¢¡x���&�&�)���£���
¤�¥1¦8§�¨_©�ªj«�¬$§(¥�©�¦�­j©�®>¯r©,©�¬�­j©�°$«�±$¥�²	¨³«�¬$¤B®>°7©r¦M®/«�®/©,§�°7«�¨)®
´Mµj¶�·,¸1¹)¸�·�º�»/¸�¼�½;º�¾<¶Iµx¾<¶	´S¶�½�»!¶,¿}»/¼
»�À7¶{Áj´S¶�¾�ÂÄÃ�¸>Å&Á�¾<¶ÇÆ
È!É!É>Ê�Ë8Ì!Í�Î,Ì�Ï&ËÐÌ!Ñ�ÈMËÓÒjÍ�ÔjÕ�Ï&Ë(Ë,Ö ×�Ø�Ì/ÑJÏÚÙ<Ô7É!É!Ô�ÛiÈ1Ø�Ü
ÝjÞ�ß<Þ,à�ß<Þ�Ý$ájâ�ãÄä�åqæ/ç�ßMè�á7å�ßBå(é�Ý�ê>Þ,ë3ì;å�Þ�í�áfâ�è!å�Ý;ë�ì�è�á$ë/â
î�ï_ð&ñ(ò�ó8ó�ô,õxö3÷�õ$ø�ö>÷�õ&ù�ö�úx÷�ð	û&ï�ï_ò�ó<ò,ü�ï�ñ�õiò(ý)ý)ð	ï)ù/ó�þ
ÿ����������
	��
���rÿ����
���������������������
� �"!$#&%('�'*),+-'
�/.
!10325476�89+9:"!;6<'*=7)->�:?!@)&�A)&:"B�>��A=<)
C&D�EAF�GIHJGIFAK$L-GNM"O�C�PRQTSVUXWIQYSVZ,S[E$L9KA\]K$L9KYU9O]L-E$^@F$_�K$O�`]EAa
b-ced�fhg�ikj?c�l9d�f
m*d�n<mpo�q"nrlNs
t buf]l9t$n@v$s
d�f�w�txq]ozyTiV{
|~}����R�������J|-�R}������I� ����};�J�����-���r���,���<�]�����R���x��|N���/�
�x�*�����(���]���9���¡ R�A¢��A£¥¤J¦9¤I�J§¨���ª©��"�R«¬�­���A���R A���A©@�
®R¯-°�±R²<°�³µ´e¶-²@·"³¸·"¹Nº
»$²X¼T½V¾5³¿·]®]»AÀ~¯uÁ�±¿¹9·]·]ÀÃÂ�¯u¹J´eÀ~¯uÂ
»
Ä�Å�Æ9ÇIÈ"É�ÅAÊËÄ�È�Ì­ÍÏÎ@Ð�Ñ]Ò(Å�É
ÓÕÔYÖ<×�ÈRØNÙTÚ[Û?ÎNÜ�Ý]Ò@Þ�ß�Í�Ó]È
à
á"âzã�á�äuà]â9á¿âNå
æèç]æ$â9éAäIêëá]ì�í�â9é�â9æAî�å
é$ï�âJíeäuàpâNå�ä-í�ð�é$ð�æ$ï�ñ
ò]ó*ô�õ<ö�ôN÷�ø$õ�ø$ù�úAû/ó*õ<ö�ü�øXô~÷
øXõ<ø�öAý*ø$õ�ô9ûTþNû*û/ÿxøAþ��@ø��(÷�ø$õ<ø �

���	��
���
�����������������������������
!#"%$'&)(+*�*-,."%$'$0/)$1,2$3,54768,96%$1,96;:3/=<?>�6A@�/=<�/=<CBD,54C6
E�F�G-EHFJI1F'K-L5M�LON=PAKRQSM�G%G�NTK	U�V�WYX�FZQSM�G-G�NTK	U[NOI+\-PAK�F^]`_
a;b0bHc%d�e�a�f=ehg	i+f�j	k�l)c%m�mnc�o^eTg`iCp
qsr9tOu�tOv;w�x	u�y)t`t�y�u�z�rH{ht={=|�z�r −> }0~��	~��;�n~J�1���J������~��O���������H����s�9�O���O�;���	���)�C�2�O���O�J� −> �0���	���;�n�J�1�����n���9�h -¡%�5¢;�0£��H¤�¥¦¨§=©�ª«©�¬9­¯®`°²±³­�´7µ�¶J©5°2©5¶·®¹¸;º�µA¶�¬s­H¬)±�¬)µ −> »1¼�½�¾	¿ÁÀ`ÂÃ�ÄnÄ�Å9ÆhÇ-È%ÄOÉ�Ê	Ã;ËÌÈ	ÉJÍ�Î
ÏZÐ-Ð%ÑTÒ	ÓÕÔ�Ö	ÑO×�Ô5ØJ×2Ô�ÑTÒ	Ù9ÚAÛ)ÜSÝ�ÔOÑ=ÚAÒCÞ	ß+Ö	Ñ=à�ÖáÑO×â×1ÚAÜSØ�ÔOÑTÜSØ�×
ãJä�å=å=æ�çéè�ê«ä�ë�ìní�îðï)æ�ñHï)ò5óHæ�ä�ç¹ô�õAö�ó1æJ÷¹ø�ì�óHæAñùä�ç`ç-ìnï�ìOú¹í�ä�å
û#ü%ý2þ�ÿ��������	�
���
����ý�����������ý
�������
��ý������	����������û
�! �"$#&%�'(%)#$*,+�%)-�.��/-10324-65�"$7��98;:<�=+>'!-�03+�?<"@ �:�0(<-A�B"�-�'
C	D1E=C	F�G<H�I3JLKMC)N�O1P<H6NQEROTSUDVS4F)H6NAC4W<F)D&XYC)N�F	E[Z�E\Z
]�^=_,`ba<_$ced
f6gihj_$k�l�mnf6f�o;p�k>_eq6q�^=f6_$cer�s<`utuvAw�te`xwyoz_�k
{}|U{�~e�T�\{��T�<{&���({��A�T�3������{����R��{��<�T|U�&���	���<���L���)�
�	���=���M�<���M���!�1���U�,�	�)�1���,�<�,���)���
�� ���¡&���(��¡$�������1��¢)�������$£
¤!¥T¦B¤(§)¨�©ª¤!«ª¬­¦e¥®¥$¯�§(¦B¤!§�¨�©ª°�«�±�¥1²	¦&³\´­«�¤!¥$¨�¤(§(µ�²	²�¶
·M¸º¹�»1¼�½	¾�¿ÁÀ	¼B»1¸ÃÂ�Ä<»1½)Å<¾�¼U½	»�»�Æ(ÇbÈÉÅ�·�ÊËÊB·)ÌTÄ�·)À!·�Í$Â�Ä�½(ÆyÎ
ÏeÐTÑ�ÒÔÓTÐ6Õ×Ö(Ø­ÐÚÙAÛ­Ð�ÏBØÔÐTÜTÑÞÝ�ß<ÛÔÙ�à�ÛÔÐTÑÞÝ�ßáÒÔÕ,Ý�ß�â
ã(ä�å&æ,ç�è	ç�æ&éRê)ç�ë�ì�í�î�é$ã;å&ï>ê)å$ã!ê)çðì�ñ�ò
ó@ô�õ$öø÷úù�û(üýô�ù�õ
þ3ÿ����������
	zÿ���	��

@ÿ�	�����	����ºÿ���	���ÿ���	�����	��������! "����������ÿ��
#%$'&�(*)�+%,.-�+/+10�2'35462�798�4;:�4;<");=�0>:�89);$�=?-@#A)�=?4�BC=?4�+D=
E@F"G�H'I;F�JLK�MNFOI�P�Q;RTSUI
J"SAQ�P
J�IVS�R'P;SXW.M@SAMNW'Y>Z[K�MNF1Q�I
\"]�^
�`�\"]�acb�d@e�]�\"f�g�]�h!!ijf�k�l1dcb�m�]�b�nci?dL]�o.l�_!\"]pi5m�f�i
q�r'sut�v%wyx�s;vzs;{�qU|;q?t�}N{[~ys;r.|;�.s@�V|��
��}N�1�!t�{'��qU}�q�r.s
���'�����5�U�5�������5�@�L�
���p�������������!�'�/�����
�����������5�"� �.�"�����5�
�
¡U¢�£@¤.¥�¦�¥D§?¦>¤�¨u£!©pªV¥�£@«!¬1¢�­V¥D§?ª;§?­@®�§5¬"¦5¨�¨�­�¬"¦�¤�¨¯­;°'­;¤!§�®
±�²�³�´�µ@¶V³?µL·.¸¹³?±�º'¸�¶y»¼±;¶'½¾½!¸
¿�³�´>¶'±�³�´�µ@¶*¿D³?±�³?¸�ÀÁ³?µL·.¸
Â�Ã
Ä�Å ÆDÅ�Ç!È�É�Ê�Å�É�Å�Ë�ÉÌÇ
ÆDÍ�Ä�Å�Æ�ÇNÅ�Ä�Å�Î�Ã�Ï'Å�ÇÐÏ!Ñ�É?Ë¼É�Ê�ÅÒÃ�Ó�Ô�Å�Â É
Õ>Ö�×?Øc×5Ù'ÚOÛ�Ø@Ü!Ý"Þ�ÚLÛD×?ß�×?Ú
àáÞ�Ý"Ú�ß;×?Ú�Û%×5Ù'ÚâÞ�Õ>Ý1Þ�Ü!ãAÛD×?ß�Ö'Þ�Ú�Û
ä5å
æ�ç�è�é'êTëUìíë�î.å9ë�ï"è�ê!ê�å;ï"è�é'ê[å;ð.å;é�ë�ñÒì@òôó�å;ïDð'å@óCæ;é�õ
ö�÷�øUù�ú�ûyü*øUö�ý.þ�ûÿö�û�� ø��yþ���þ@ü1ø?ù5û.ö�ø?ù?úNû ü"ø�ö�øUþ��6ö�û��
�	��

���������������������	�������! ��
�� �"#"$���%���& ��������� #�'�(�)���*�+�
,.-�/1012�3'2�/14527658)9�/;:5<4/1=�>$?@-�<�276$8A<$3B<�C$DBD%/�,�/	EFD%0�9G2�,
H�IKJ5LFM�NOH)P�Q�RTS*NFU�NFV�LFH�Q�I�UWJ5I�V%NXN1YZY'Q�[\Q�N�U�H.]�^�Q7H)P�_&Q7H)H�_)N
`�a�bdc	eFf!g	bZ`.h*aiejc!k*lm`�ejc!npo�qib'rsctr�l�u�f�aibdc�v+bdc	e\w
xzy${.{%|�}$~���������|X�F{%|Oy����7}���~�|F�
���&��~�|	��~��5�*|F}�|F{��F~�|O~)��|
���	�d�����d�7���F�����F�����F�%�O�F���1�����F���7�*�
�)�*�����j�$�$�%�$�1�F� ���K�	�
¡�¢O£�¤X¥$¦%¢�§�¨©¡)ª�¨F¤G«

¬5­�®	¯;°(±s²z­�³�´¶µ�­ °·³*¸.¯�­�³*¸d±�¹
º¼»Z½�¾�»@¿!À$Ám½	Â+Ã�Ä�½Å¿1Â+Æ�»Z½	Â+Æ'À$Çt»�È�ÉsÆ'¿�Ã!Ê�Ê)ÈpË�½�Ì%Æ�Çm½�¾
ÍdÎ)ÏZÐ�Ñ�Î)Ð$Ï�Ò	Í�Ó$ÔÕÎ)Ö�Ò5Ñ1Ó!×XØ�Ó�Ù�ÒFÙ$ÎBÐ$Ù�Ú$Ò�ÏÛÎ�Ò�ÍdÎzÎ)Ö�ÜFÎB×
Ð�ÍdÎ
ÝmÞàß�á�â�Þ\ã+Þ�äæåZáèçjé\å.ê'çjë.ìíå�î�Þàß1ã�ê�å.Þ\ã�ê�á�ïñð5å�î�Þ\ìòé1ã�Þ
ódô1õ�öm÷.ó�÷�ø�ù�õ�údú.û ÷.ü�ýAú%þ!üÿþ�ùsó�õ�ó�÷�ø�ù����Aõ��	þ�ö õ�ù�ö
���
	���
���	��
����������������
������
��!�����"� ����
#� ���$�&%(')�*�+��,-��
#��,����*.
/!021�3�4�5�4�6*7(8 0�1:9;8<028�=*>;?�028�@BA�5(1 A�8�7�8�0�CD/;0�1 3(4�5�?E3�A�5�8
F�G*HJI-G
K�L�K!MON!K�P!L�QRM#L
STMVU-LWL:X(L�F�N!M#L�PYU;Z\[�M^]�L�[�S�M^G*K�L
_�`&a2_cb*d&ae`!f�g�hi`kjml�npo�q)d&ae`*rsb�t�u$_�`�t�u#dvr;u�aeb�w)a�ae`*r
x y{z}|i~���~*�}�-����~����ix���~�|i~:���s�2��x:�T~&������x��{�������#z}�)��z}�
���e���)��� � �&�k���-�e�;�{�(�����)���B�-� ���� -�&�¡�-¢£���)�
¤¦¥Y§i¨$© ¥ª© «;¬�­ ¬#¤�®&«¯¤�°ª±�®&²-© ³�©�´¶µ;·¸©:¹�©�±:º;¬#¤�®&«»®;¼W¬$½-©
¾�¿
ÀT¾^À�Á(Â�¾#¿*ÃiÄ�ÀÅÀ�Á(Æ Ç�¾¦Ç�¿�È�Ä�É2¿ÊÂ�ËJÌ-Í¦¿ Ë�¿�Î!¾�Ä ¾�Â�Ï*Î-Ð�Ñ-Ä�À�¿�Ò�Ó
Ô}Õ-Ö�×�Ø�Ù�Ø$×�Ú Û#Ø�Ü*Ý-Þ�ß-Ú
à�Ö�áâÛ#Ö
à�Û�×�Ü&ã�Ö ä2Ú�å;Ö\× ä�Ø¦Û#Ö ä�Ø�Ú\á!Ö�Ù�Ø¦Ý�Ö
æèç-é:êÊê�ëìê�í
î�êèïié*î�í�ðcñ!òië&ó¸ô�ë&õ-í:ö�÷¦ó�ø¯éùïií:ç�é:õ�÷�ë&ö�é�ú
ûTü-ý�þ:ÿ���ÿ$þ�����ÿ����	�
���
��ý�þ����Yü�����ý��
���
���!ý�����ý�û����������
�
���! #"#$&%�$&"#'�()$&*,+.-0/!'1�2 �34"�56$
(7 �56$0'8'�59 8'�+.'#:0*<;�*,=!�>(7*
?A@CBED&F�@GF#H�I�J#I7?)K<H!L)MEJ,N�F1OQP�R9?AI�F#R9?)JSF�TUI�F#H!O�F,OVM�W
XZY
Y�[]\U^`_Uacb
d�egf�h1ijek^Al
e�X#mnb0hoXpm�Y�e�f�^Aq)^�f�X�bA^Ah�_oijX�b
d�e�i
r
sUt�uGv�w,x
y1z<{nt�|9}0~�w
w�r�|��,�
��w#�7r&|�|7��y�v����&��v�t�rA��w�u�}���t�|6y�x
�0�������������Z�j���<�������]�0���������
���Z�����,�0�Z���g���<���������6���C�0�#���
�� #¡�¢2£�¤�¥
¢��Z£�¦¨§A¢Z£�¦
¤�©
ª�«<¬�­�®°¯�¯U±³²0´kµ·¶)¸#´¹¸�º�±j¬¼»¾½E«#±¿»À¸ÂÁ,«,¶)¶Ã±)½E¸
Ä�Å]ÆUÅ]Ç�È�É Ê�É`Å`Ç�ËÀÌ�Í�É`Å]Ç�Í�É¨Î1Ï�Ð�ÑÓÒUÔ�ÕZÒgÖ�×�Ø)ÙÀÔ`Ú&Û�Ú
Ò�×nÚ0×#Û�Ú0×ZØÜÚ0Ý
Þ
ßZà&ßZá7âÀã`ä�ß¾å�æ1çèâké�ä
ê¹àAã]âkß�ë°ékë�à0é�à0ßÀãAë�ìUãAë6ã]à0ß�Þ¹éZä�Þ
íïî�ðZñkòZñ�ó�îUô�íõô
öA÷0ðZñkòùø�òZú7÷�û�üZý�þ`òZú�ÿ�÷0òZ÷0ðïûAÿ�újð��<ûAÿjû¨÷0ð�ó��
�������	��
��	��
���������������������������
���� �!
"
#���������!�!$&%(')��
#��*�$&%
+�,�-�.0/21�354)6�17/�89+�:<;!/21�3 . -�=5>�?�1�6�4�-�@2AB1�@C@#=5D�8�17+	-�E�F�8G+�,
H�I)JLKMH	N7HOJ0PRQSI�JUT5HON7HOJ7V�W	K2W9HOJ�XZY7[MW9HOJ7[MW!\&]^J`_�HOJ7])XaKbH�I�J
ced!f�g�h�i�j5kml9npo7qMr s"i t�u7iwvMg�x&y tGvMg�z{u�j&| g7v�tG} ~(h�i�g�h�vMg�g
�a�w�����C���9���!���C�����)�`�����&���a�������`�������	�	�������O�#�����!�)�
���)���O�	���L�2���������b���! �¡�¢ ��£��`¤)�O�����O���)¥¦�2�������&�7§¨�! ���©«ª
¬L­&®°¯²±�³µ´M¶·¶`±�¬L­&¸¹¯²º&®�º&»pº5¼�±�½�±�¾p¶¿®2±À®�¯p­
Á�Â�Ã�Ä	Å�Â�Å�Æ�Ç°È�Ç�ÁOÉ5Æ�ÊOË�È0Ì�Å&ÍÏÎ`ËÐÈ0ÌCÁ�Ì«ÃÐÈ�Ç	ÑÓÒ&É5Ô�Å�Õ�È�Ö)Å&×
Ø�Ù�Ú�Û°Ü�Ù�ÚOÝ5ÞpßáàãâÐÜåä Û�æ�Û�Ü�ç¨Ú�è�Ú�Û°Ü0éêØ�Ù�Ú�Û°Ü�Ù�ÚOÝ5Þëæ0ì	ì	Ý5íîè
ï2ð`ñ�ò	ó#ò9ô	ò9õ�öø÷�óMôO÷`ôOð<÷�ùOôOð`ïw÷Uô�ï2÷`õ�ó#ò9ô	ò!ú0õûó�ð�ü0ý)ð7õ)þ�ðZò	ó
ÿ���ÿ������	�7ÿ�

���ûÿ�
)ÿ��Ðÿ������²ÿ�
����Ðÿ���������ÿ����	� �!�Mÿ�

"$#&%('�)$#&%!*�+-,.)�"�/$0.12)435)6,.)�78%!)$9�)4';:</$'=12*�>?)A@�/B%!7C0�#D)�1
EBF�G�H8I4J<K�LMK$N�K�O�H8K�IPF�Q<HSRPTVU<K$Q-W�XYO$X�K�WZO�LMK\[]G<HSXY^S_<HCR
`ba!cDaCd�e�f�gihkjba!cZl�m&a(dYe$m&a;n�opa!crq<cDe�sYq�tusvaCmDc�dxw�cZw]y.n�z5e$mD{
|�}�}2~�}D���Y�.|��p�B�.|$���!��}��!�.���v��}M�v�����v��~8�.���2��|�} ���!�.�
�B���b�$�&�����V���$�&�v���	���B�]�������Y���Y�� 8�<���M�����Y�����!¡C¢��<£b¤�¥���¢

¦¨§ ©�ª «­¬
®�¯�°$± ²(³ ´2µB¶(· ¸�¹
º8»½¼x¾­¿bÀÂÁ�ÃSÄBÅ�Æ�Ç�ÈÂÉ�Ê
Ë Ì�Í�ÎÂÏ�ÐxÑ Ò¨Ó ÔBÕ�ÖØ× ÙÛÚ�Ü Ý�ÞÛÝ�ß$à áBâ(ã äæå

ç
è�é�êSè�ë$ì�í�îÂï�ð8ñ ò�ó
ôuõ�ö�ö�÷ ø�ù

úbû�ü ý�þ�ÿ�� �������
�
	���	�
������ ���

���������! " �#

$&%('�)�*�+-,�.0/(132 4 5�6�7 8:9

;=<?>�@

A�B�C:D�E(F�G H�I

JLK�M�N-O P
QSR TVU�W�X Y Z?[�\3] ^�_

`ba�c:d e f�g�h i�jlk=m�n�o:p q

rtsVu�vxw&y�z {V|�}
~ ��� ����� �����=�����?� �����

�=������������������ ¢¡¤£¦¥§¥�¨�©ª��«�¬���­®­

¯�°¢±0¯¤±-²�¯¤±(³
´�±�µ�¶3´�±-²·¯�¸º¹ª²�±0¯3°t±¼»�¯�½(¯¤±(¾º¶¿²�¶�¯¤±�´Àµ(³�¶Á¯�±(³�¶¿¸:ÂÄÃ
Å¢Æ�ÇºÈVÉ¢È(Ê?Ë¢Ì3Å¢ÈÀÍ-Æ�ÎÐÏxÑ�Ì�Ò(Ì�Ó¿Æ�Ô¢Ò�ÕÖÍ-Æ�ÎÐÏªÕ3È�×xÓ�Ì3ØÙÓ¤ÚÛÅtÓ3Ü�Å¢ÈVÊ
Ý3Þ¢ß(à�Ý3ÞªáÐâäã¿å�á(Ý3Þ¢æ�çªèÄé�àëêíì¢î�Ý�áÀæ�ïbÝ3Þtî¤ê�ðñê®æ�åòá¼ìªæ�î�à�Ýóê
ôíõtö:÷tø3ù�ú¢ûÛö-úÄô�û�ü�ýtû�ùªþ
ÿ��������	��
�
�
����������������������� �!"�#���#�$!��%��&���
���&' ����(�
)+*-,�./.10�.�243$5�56373(*-,98":�;$<=.>3?5�@=,95�A=0�.B0C5�0C2=:�.D5E,956;�.�FG3$8";
H-I=J9K�L$K=M+NPOCQSR4L�TBN+TVU-O�H-H6U-NPOCK=M9WDN+J�TBN+X?MYL$QZR4U�N9[�OCH-\�]

^`_ba4cSd�e7f6gihGd9fEj�gik�g7lVf�a=cmf6c$n�fof�pBc+cSq+gik�nDf-p�e4q9fEj�g$k�d9k4r
s"t+u�v9wEt+xSw6t�y�woz+v�y>t|{�t9}4t9s"v9wE~��i}%v9}=x(t���t�z9�7wE~��i}%x7�S}=�iw
�����%�����#�B���6�����i�7�(���6�+�4���6���4�>�7���E�Y�`�%�+�������Y�
�Y�9���=�Y�����? (¡C¢�¡� �¡C£$¤P¡C�¦¥

§©¨�ª�«	¬®­$¯E°$±9±/¬i±³²�´�ªiµ�¶·¬$­Y¸¦¹�ª�ºB²6¬�´=¸#¬$»¼±·ª�½#¸�¾Z°Yº>¬¿°YºB¬
À%Á�ÂBÃÅÄ�ÂBÆ-Ç6ÆEÄ�È�ÉÊÇ�Ë�È�ÌÍÁiÇ�Ë�Ã�Â/Î·Ï�Ç�Ë�Ð�Î(ÂBÃ�Ñ�Ð4Æ-Â"Æ-Ì4ÒÓÀ	ÁiÂ>Ã
Ô+Õ�Ö¦Ô+×�Ø>Ù�Ú�ÔÛÖ¦Ô�ØBÖ#Ù�×�Ü�Ý+×�Þ�Ü�ß>ÔiÝYÖ¦Ô+ß®à$á7Ú�ÔYß/Ý�Ü4Ô7â�ÖEã�Ù#Ø
ä"å�æ�ç�è�é'ê�ëÅì¦í�î�ëYïÛð-ï�ì#æÍí�ñ$ñ�æ7ç�ï�ìZð-ïòí9ó�ó�èCô4ð�ï4õ¿ì�å�ë
ö7÷Eø9÷Eù9úüû�ý"ûC÷Eù+þüÿ��Dû�÷6ù��Dû����ü÷��?ùYø+ÿ��Zÿ
	�ø+ý>ý��

��
������������������! �"$#
%'&)()&
�+-,/.10324�5�6871&:9<;�=>+-&�(:?�*A@�BC5D&CEF?D2:GD&H7D&�&:*
IKJML�IDLKNPO)QSRTL�JVU�IKIAWYX�Z/[�\S]_^K`<N3abLSL�c
d�Ofe:a-g-LCJ�ZhO:[iabO)Q
j)kml�n�n>o-p�n�obq/rAsDtvu!wDp�nPpHnxobl:o-p�yhzDl�nPp){|l�}K}�~M�Kl)j:wAp�n�ob�
�����C�������C�M�-�m�D���C���1���f�������
�����i�����1���m���-�f�P���f�-�b���
�A�������f���>�����3�����m�T���K�K���f������ ¡�m����¢¡��¢£�A���¥¤��i��¦����m§��A�
¨i©¥ªf«�¬)­�­M®)­�¯±°±²�³h­�´�¨�µ�¶�²�¬)­·­�²�¨�´�¸º¹�²A¬�¹¼»_½K¾<­�ªf¬�¸
¿DÀHÀ)ÁTÁTÀ)Â:Ã�Ä�ÅDÀ)ÆYÇ|È1ÉPÀ)ÊËÃbÌËÃbÀ�ÉxÃ3ÃhÍ�ÄbÉ�Ä�ÎKÃ-À:ÏMÐ)Â:Ã�Ä�Ì�ÎÑ¿�Ç
Ò�Ó�ÔKÒxÓfÕMÓ�Öi×hØYÖ�ÙÚ×�Û�Ó·Ü�Ý
ÞYß�ÓfÕ�àiáâÝ�×�×�Ò�Ø�ãKßi×bÓfÕ�ÝfÕä×mÛ�ÓVÕT×�Ý�×bÓfÕ
å�æHç�è�é�ê�ë
ìDí�î�ïDðòñÚð
ñ3ó1ð
ô|æ-õ�ì1ö
î-÷�åiì�ê�ëCêËîhï1ð
øhùMú
û1üPý�øbý�þ�û1üHþ�ÿ������Sü��	��
�ù
�£þ�ù�� ýbüSù����hú
ø���� ø-þ
����������� �"!$#�%'&(!$�"&)�����+*-,�.'/�01%�&2�"&3# �"!$�"�4&65�7(�98:���";<%
=4>@?BA3C:D�DE=GF:D�=4HJI+KMLONPF QRFTSUFV>�WXF Q�WYH3F SZ=3[\QRFBF
]R^�^�_�`�]9a"b$c d"e\f'gihjc"kl]9m2eonqp�p�rs]R^�^\m-tudGk2]"k2cwv:g(]�xB_�]�hyd
z2{<|'}�~O� �������)z2� ��zJ�i���Y�+z��$�9�i����������{��9�"�u�����"z�z3���\�)z��$�
���(�������������(�9�9�Y�"���w�9���$���:�4�����:���G�q���$�����:���������G�J���2� �������
�9 i¡i¢w¡i£�¤�¥2� ¦o§�¨�©:¤9ª�«9¤ ¦G¥¬«9©�¢P¢P­�£�¡(«9¤�¥J¡(©�£\¦�¥J©U©�§�¥J¤�¡i£<¤�£
®"¯:°3®�±\²�®9²´³3µq±�µi°3®<¶G°2·"°2®P¸	· ¹"º�µi±$®<»2¼�½�¾�¿ÁÀ�ÂX°�º\®�Ã�·9ÄJ¶�Å
Æ�Ç�È"É\Ê�Ë4ÌBÇ4ÍÎÆ(Ï$ÐÑÇ�Ð�ÊGÒ\ÓiÆ2ÔiÉ$ÕÁÖo×�Ø�ÙÚÔqÉ�Æ3Ì
È´Ë4Ó(ÌBÛÜÕ:Ç�È�Ý�Ï
ÞJß�à�áãâ�ä�å(æ"ä´æ à�ç�è�ß�à�éoÞ�é�à�âëê\ì�è�ä\í�ì�ß�îÜï�ð�ñ$ð�ò�ó�ô2ð õ÷ö"ø$ù
ú9û�ü�ý$þ�ü:ÿ��(û�ü���������ÿ��
	���û
� ÿ2þ��4ÿ��iü����������������(þ���������ü��	þ�ÿ
�����! !"�#�$&%�'
(*),+.-0/1'2�2)��!�
(3(�4�'
(.4�-05�6748'�),9�5�-;:=<1'><1(?-05�6@�
ACB�D*E8B�F�E8G�HIG�JLK�FMB�FMN=O�PQB�D?F.R,STO=B=U�U�N=VWGYX
Z,N=O�F[R*FMB�FMN
\^];_a`^b?_dcfe�g
h�ikj3l�m!n�oa]0b�_�p�p�b?qY_�rdnso,tYm!bu_�rdm8v&_dw�\xgyh�i
z^{0|u}�~d��������|u�=���*�
��|u~�}k~���zY}��d��z���}d��}d|u�d��}�����}��M��~����*}��
�������^�1�.�;�M���,���������7�M�C�d�����0��� �;�?¡�¡7¢M�=���;£�¡�¤y¥�¦�§�¨��
©�ª=«�¬!­?®�¯u¬�°1±y²y­?²a³�®,­u´�µ�¶�·¸¯.¬�®d¬8²�´Y¹;®�³^­u®,º�¯k®�¯k©�»!®�¯3¯
¼?½¿¾^À=Á8ÂuÁ�À^Ã�ÄMÁ�Å�Æ¿¼ÇÃ�Æ�ÈÉ½CÊ�Å�½�ÅC¼d¾IÃÌËCÁ�¾�Ê�Ã�Ê�À�Ë�ÍÎÅ1Â
Ï�Ð^Ñ�Ò,Ó?Ô�Õ�ÒsÏ,ÓuÖ�×�Ò,ÓuÖ;ÔsØMÐ^ÓÚÙ
Û�ÜÞÝu×�Ô,×8Ò7ß�Ö;Ô�ÕYÓ?Ô,à�Ý�á1Ô
Ý*Ò�ß
â^ã[ä�â^ã�å;æ*â�ç
èaã1éêé�è,å�è�ë.ç;â^ìIí�ã1ë.â^æMî7è,å8í�â^ã�ïñð�í�ò�ó1í�ã�ô
õdö�÷>ø�ù�ú;û�ù�õdö�ü ý�þ^ÿ��������	�
�dö���õ�
����!ù���÷���õ	����÷��
ö��!ù��
��������� ��!#"�$%��!#& �'& ()�*"+��& �-,-./&10204365)�87#�89�&8�*�;:<&87#$
=�>	?@>	ACB*=DB�>/=�BEA	F/=G>/=�H�I
J;KMLONQP�RSB4TU>EVXW#Y2Z�[C\4])^�_a`2b
c�dfeCg+h�e�d)i
j@k1dfk+lSh4m)eonqp@r�e�h4m)k+s�t�uEm�j@v�mxwUi
e/izy)cC{*h2j4c	|
}	~��/���+}	���/�G�-���/���*����� �	���2���G���+�;���U���-~����/�U���2���
���������8�����������/���@�@�/�f�����-�1���+�� ;�����������2�8�	�¡�8�/¢¤£U¥4���2�o¦*���)¥§�
¨ ©1ª�«�¬�­ ®�«1¯

°²±´³¶µS·¹¸�º�»¹¼	½�µS·¹¼�¾¿·¡À<µS·ÂÁCÃSµ�½�·¹Ã¶Ä'µSÅ�Æ
ÇqÈÊÉ Ë
ÈÊÌ�ÈCÍUÈ	Î@Ï1ÐUÑ�Ò)ÓÔÉCÒqÉCÐ�Ð�Ë
Ï�É	ÕCÖ<×�Ï;ËÙØ-È1Ú�Ø�Ñ�Ò)Ó'Ø@ÖUÈ
Û#ÜCÝUÞ ß)à2á;â�á�ãxä�Þ ßUÞæå/ç@Þ1è�èGÜ1è�Û#Þ1èGÜ	é<á;êëÞ êUéqÞ8ì�Þ	à�ê#è�í
î¤ï�ðòñGó�ô	ó�õ+ö	÷�ô/ø
ó�ù)ú*ô1û�ø�ô	üýñ	þ ÿ�ô+ñ � ������ó ú�ñ´ô
���
	��
	�����������	�	�������������������	������ �!�#"
�$�������
	��&%��('*)�+
,&-�.0/21�.�,43�56-�.87�5�3!98369�5
:�;<7>=@?4A2=B7>-�ADC�5E.�FG-�.H?
I�J�KMLONQP&R(PTS(U�V6W(PXU2LYP�IZV\[
V\I�]&^�V\J�SY_�`Y]�U4P�ab^DP�Uc^�V6Sed
f�g�g�h
i�f&j4k@l�iZhmiZn0oQpqj4r\s\iZh�t6p4u�r�p&vxwci�l
r�y>f4h
pzw�{�w�r
p4|�w
}E~���}������Z�#�!���T�M�D�������T��}��6���Z�����#��}�}
�&�D}!���#��}�~����Z����~
�������0���
�4�6�6�Z�x�4�����D�����
�4���
�T�D�
���#�z #�x�4¡�¢�£����E�6�������
¤#¥�¦D§�¨�©Eª�«�¬®­�¯$°B±�§!¥0²Z¦�¥Q³µ´Q¶(·¸¥&´2¹6º®«�«T©�´
¨�¦\¤#¨&´»¥&´»¥
¼
½Z¾D¼�¿O½&À@Á�Â�ÃÄ½0Å�ÆO½4Ã�ÇEÈµ½4É�¼6ÇEÉ�ÊxË»ÇE¼!ÌÎÍ�Æ�Æ�Ã2Â�Í&Ï4Ì�½T¾$¼�Â
Ð�Ñ#Ò0Ó�Ô�Õ
ÔEÓ0Öc×!ÔEØ&Ù#ÚEÛ#ÖqÐ�Ò0Ü¸ØqÛ�Ý2Ò4ÓQ×6Ú
Ø&Þ�ÔEÒQÙ�×6Ò4Üß×6Ò0Ð\×!ÔàÙ�á�â
ãåä�æ�ç�è#æ!é�æ!êqë�è�ì�í�î�æ�è�ì�æ�èzîZï�ð�ð�ñTä
ñ&ë�ð�ê�òzæ!äóì
î�ô�ñ&é�æ�è�ñ
õeöq÷
÷\öqøúù�û(öZüTý
þDý�üZÿq÷\ý������
õ(ÿ�ùQö���ü����Oöqøcÿ
	�ö üqø2ý!÷\öqø2ý�ÿ
�
�������������������! ���"$#���%��&%'�(�*),+��-�.�/���&+��&0-�1���2���
31465�798�:�8�7�;=<>8�?
@A8�3CB$?ED�5�FG5�DH;&3I;,3�<�;=<�5�7=JK;.L1<1MK;=@'DNB$?
L(5
O'P
QKRTSKUWVYX�QEP[Z�V�Z�\1]�^_Za`cb-Q'Z2]dPe]TfEg6hGPe]9^i]�jK\kZ[R�j-S
l'm�n2o�pKqsr&t2mun
v�mEw
o1x(o1m�lzy�n2o>q�p|{�}T~9m�wT�(�({�teo1m&q6�kmEl
�'�
���.�>�>�
�-�=���Y���>���&�����6�e�������T�(���&�
�6�=�����K�i�.�(�W���.�(�>�
�
�1�T�������¡ G¢6£&¤
¥�¦N§�¥&¤�§>¨�©KªH¨>¤¬«®­K�
¯A°G¤C±³²$¥.§W­'��¦µ´W¶¸·.¹(º
»�¼K½>¾�¿$À=ÁG¼'ÂEÃH½>¾�Ä'ÂTÁÅ½�ÃEÀ�Æ&Ç6Á�ÂNÈ,ÂTÉkÊHÈc½ËÁG¼_¾�Á�Æ=Á�À�Ì=¼'Æ=É1Á�¾2Í
Î'Ï�Ð,Ñ.Ò6Ñ.ÓeÔ®Õ
Ö6ÑA×�ÏØ×GÎ6ÑµÙkÚ&Û.×¬×�Î'Ú.×ÝÜ(×�Ú.×�Ñ&Û.Î6Ú.Ók×�ÜÞÑ9ß�×�Ñ9à'Õ
á�â�ãTä�åWá�å>æ�ç6ãTècé1åGç'åWá�ê¡ë(á�ã.á�êØìAãTí.î'åWç6ê
ë$ï,åWá�î[ð'ñ>ò.ó
ô.ó
õ.ð�ö
÷9ø6ùûúTüEø6ú9ýKþ�þ
ÿ9ø6úTÿ�� ��� ÿ����
	Aÿ�� � üKù�

��ý�ø-÷����>ÿ���ü
����������� �!�#"��%$&$('*)!',+-'.�/'0�1$324���5"�6��(67+ + �7+8$9�/6��/�1$�:�;<�=6��9�
>7?/?A@7B=C�?4D,E�FG?AHI>7?
?4>KJ7LI?
M�D4NOC�P&H�QSR
@7B D,ET?
UVH
WYX,Z&[K\7]^X^_a`Sb�cedgfh[ji(X0Z�bk]lX4bnm�oTZ&[KW�[Ki9X,`�X,`�pI_%q!Z
r1s�tAr1uSv�w4x%uyx�z{t^|hr~}��^��r1t
|hx���tAx��Vx%���yx%u
�9�
���^�7�������A�4�������%���9�^���A�
�-�!�<���a�-�Y���
���
�<�
���(�=�������A
¡A¢
£�¢
¤7¥�¦!£�§A¢5¢0§(£�¨�¡�©-¢/©0ªK¨«¢0¦a§(ªK¬!­K¦«¢0¦�¤�¥7ªK®°¯!©-¨�£�¢,©,ªK¨�ªa±
²�³�´!²�µa¶4¶9·�´a¸8¹A¸/º�¸/·7¹¼»½¸ ¾!º�¸g¿/¹&ÀY¸
³ÂÁa·7¹(¿ ÃK´½¸/·7¹A¸8²7º7¹�·7¹5¸/³
Ä&Å�ÆÇÅ�È�É�ÊOË�Ì�Ä�ÄkÍ Î�Ï/ÅÐÉ�Ñ!Ò9Ò�Å�Ó!Æ�Ä(Æ4È�Æ^Å�Ô�É�Ò�Å�È�Æ^Í Ó�ÕOÆ,Ê�Å
Ö�×.Ø9Ö�ÙaÚÜÛAÝ/Þ�ß!Ö7à7Û¼áãâY×0Ö�â�ä à7Þ�åVÝ/æÂÞ�ß�à�ç!à�ßaÝ^è!Ý/æÂæ1é�Û�à�Ø4çYà
ê-ë!ì3í�î�ê,ï0ð�ñ�ê/í�ò!ì�ñ�óaê-ë!ì�ê ô9í�ñ�õ(ï*ê,ï0ð1ñVö=í�÷aì1óYí�ñ!÷#ê-ë!ì�ñ!ì�ø
ù4ú/û�ú/ü7ý^ù(þ�ÿ��#ù ú��Yü��9ü��,ù�û��aü
	��
�Yü��Âù�ü�ú���	 ú��(û���ù��.ú�������ù��
�
�����������
����� �"!"��#%$&�('��*)��,+-��./���0�1���324+-�('��,5768�
9�:�:�;"<�=%9,>�?�@7AB=�>�CD>�C�?FE/G3;HEI;*GJ>�=K;*LM;"NO>�G-9
L8:-=�>�=K;*L8:
P
Q/P
R3S�T%UVP1WFX"Y[ZFU-P
\^]4_^\%PHU`\^S�Z�UVP�U,a�bdc�PeUVP1S1]*f�W
g*h
i�j�k�lKhnm�ophKqrlKm0l�i�s�otq3uns�l%j&vKi�m�wxq`lKs�lKj�k�yts�izl�qrlKm {ts1q�hnk
|J}�~�}��z���3�J�
�J�����H����}n~I�H�
����~8���%�8��~��
�/�I�n�����/�
�����K���t�3�n�H���������t�&� ��¡¢�����t��£/¤¦¥¦�/����£��
§���¨��������O�K�©�ª�
«
¬
­/®r¯°¬
±�² ³1´�µ¶¬
­*±K®�µ`®1·z±d¬
­ ¸V¹*¹t«»º"¬»­"¼¾½&³�¿�®
«IÀ�²/®
À�Á/®�µ�·VÂ
Ã`Ä/Å,Æ�Ç1Ã^È4ÉIÊKË�Ç�ÌtÍ�È"ÎpÏÑÐHÒtÓ�ÔÕÃ`Ö%Ç�Ö%Ó�Å,Æ/Ç,ÔzÖ�Ã�×�Ã3ØªÌ/Å1Ó
Ù�Ú4ÛnÜJÝ�Û
Þ"ß¾à&á�â�Ù
ãåä�æ/Ù
ä�ç/Ù�è�Ü¶é�á�è�ç0á1Þ&Ý�è`ê�âHÛ
Ý�Ûná�Þ"ê
ã8ëíì�î
ïJðVñ�ï`ð�ò�ð�ó*ô�õ�ônön÷1ó/òVø
ùKúüû�ý©û
þ¾ÿ����zú�����ú¶ú��0ÿ��*û��4ú	��
4ú ú���
������������©û�����
��������zú�ý
��� �"!#��$%$�&('#�*)+&�,.- /�0���� �+0�13234�/5)�4768��!9�+:�-;&('#�
<�=�>�? @�ACBEDFBGAIH+?KJ�LCM�L�DNBPOQ=�D�RTSTHE>�BEUWV�@�DN@�<GH�XY?ZM�L�A�[\M�=
]�^�_N`5a�b"c�d�^e^+a�a�^+f�c�`g]�^�h�^+i;i%j�a3c�d�^lkCcnm�cn^�oQ`�i `gcn^Gpqcn^�iZc
r�sCt#uGvxw+y�uzr�vx{�|�u�v {nwC}~wG�#����u�|�u�vF�8{��#wG|�{�sC��s��*|��.u
�������#�#�N�+�Z�����T�������������n���#�������E�������Z�C���N�������
�����;�� ;¡3¢5£N¢¤�� �¥§¦E¨Z¢¤�5 E¨Z¢���©

ª�«�¬;«�­�«�®	¯�«�°
±N²�³ ´¶µ ·¸µ�¹�º�»Z¼nº�½.¾À¿�ÁKÂ�¼�º�Ã%Ä�¼�Å�½�Æ~Ç�È�ÉGÊ�Å5Ë�Å�ÊGÄ�¼�Å�º�½�Ì

ÍÏÎGÐ ÑGÒ\Ó�ÔCÕ5Ö�×QÎEØFÑQÙÚÑGÐZÖ5Û�Ü�Ý�Þ+ß#ànáÀáÀáãâäÔ�åPæ�çCÖ�ÑEØ
è�éCê�ë�ì�í�îðï�ñFìGò;ò;ó�ôFè�õ÷öùø�úZû.ü�û�ýCú�þ�ÿ��Tü�ú���ó�����î
�
	�	���

����� ������������� ��!#"%$'&(�#)+*-,/.10�)324�#065�"4$87:9;�#�
<>=�?�@�ACB#@�DFEHG�IKJ%LNMOD%P:QRPSL�TVUW@;T�L�XYP�D%Z
[]_^�`-a6\#`�b3ced�b
fhg�a�ikj�b>lnm%oej�j�i�dRp-^6q�rWbndRskb
t�m
u
v�v�v�w

xzy�{ |~}�� �O�4�:�R�:����}��;�;�������%���1�n�4�6�%�-���
�-�6�>�(�����k�>�
���k�����Y�����>���� �¡;¢~�
�R£¤�k���F¥>¦ §¨�#©ª��« �_¬1­ ¡
®�¯±°³²´¯±µ·¶ ¸º¹»¹»¹
¼k½�¾z¾À¿%Á Â�Â�Ã�Ã�ÃÅÄ Æ�Ç
¾kÈzÉnÊ Ç(Ë�Ä Ì#ÉnÍOÂ�Î�ÍÏËªÂzÆSÐ>Ñ¤É�Î�ÆSÌ#Ð>Ñ:Â�Ò
Ó�ÔÖÕ�×3Ø
Ù�Ú�Û
Ú�ÜzÓnÙ�Ý

ÞÀß à áeâ�ãåä
æ¤ç#è�â6é�ê�ä_ê�ç>ë
ì�ä
æ:ê�í_î�ïñðåò�íSó ä#è;ô4õ�æYöÏä#è�ò�íSö
÷¤ø�ùûú�ø�üþý%ÿ��������	��
��nü
������������������� ø6÷
���������! #"�$&%'$��)()$+*,�-�/.102(23-4�365!798;:�5�<�=?>@:
ACB�D@E

FHG)I JLKNMOKOP6Q,R�R2STQ�UNV�J	SWR2SWX�Q@Y[Z�X�\,X#Q^]`_!a�Q�bTced�_�f
gih)j)kml;n;oqprn;lts�kWu�v@w+x@y{z|h�s)u`}~kHoHvt�^����h�u2wCy
�C�)�)�)�

�H�)� �6� �6� �{���e���2���@�N�C�!���)�;������� �O�;�6�C�O�T�� ����C !�
¡-¢1£�¤
¥6¦1§�¨�©,§!ª�©@«m«H¦�¬®­;¯{©@°[ª²±³©�§�©,´+µ�ª#¦T¶�§¸·¹¶�´
º�»�¼!½¾»@¿2À¹ÁÃÂ�ÄÆÅOÁTÇCÈ�½�ÁTÀ[É,Ê!ËÍÌ+ÎÏÎÐÎ ÑqÒ,Ó�ÔÖÕ�×
ØÏÙ@Ú6Û�Ü)ÝTÞtß[àmáNâHã)Þ�ã/äNÞ;å[â1æ�ç�è�Û�Û�é{ê�è ë!ì'ê,à|ê�èíë)î)ï!è
ðOñ|òÃó2ôCõ�ö�ö�ó

÷1ø�ù ú-û ú®ûeü�ý�þ�ÿ'ý�ÿ��^ý�ÿ����/û��qû	�6ý�
!þ
���|ý������
�
�������
�������� �!"��#%$�&'�
���
�� �(*)
�� �+-,.�*/0�
)
�21
3547698;:�<>=�?7@�ACB2D�E.3FD�G�HI6IJLKNM;:�OQPSR�KN@
:�T�K
U�U�V�W�X*Y9V�Z�[�\�]^Z�W�W

_9`�a b5cedNf�g�h>f�ikj�c�lnm^o
p�q*prh�isp^t�qub5c vwc�xym^z|{}g~t�i
�����~�2���n�������"���}�}�����������y���2���>�}�r�����������I�*�
���������L������ ~¡��7¢�£9�%¤���¥¦�¨§ª©^¡��«£�¬�­�®°¯�±k±²±´³¶µª·^¸�¹^º
»½¼*¾5¿�À�Á�Â�Ã�Ä}Å;Æ�Ç�Â~ÇÉÈ;Â�Ê"Æ9Ë�ÌeÍ0¿�¿ÏÎQÐ�Ñ*Ò
ÄIÐ�Ð�Ó
Í
ÔÖÕ^×ÙØ^Ú�ÚeØ�Û

Ü�Ý�Þ ß0à�ákâ*ãQä�å�æ�ç�èéæ�ç�êìësà�íCà�î|ä�ê�ê*ï¶ðòñ�ó|ç
ôöõS÷�ø9ù7ú�ø¨û�üþý ÿ ����� ù��}ù	��

� � �;ý ÿ�ú
ù���
�ü�ù���ÿ��
������������������ "!#��$&%��'�(�*),+.-0/�1212143657���8)�9
:<;*=?>A@ABDC,EGFIHKJ'LMCNLPOKC�QRJTS�U(VW>M>YX[ZM\^]�F_Z�]�`AV
a�b7cRd^e7f�fNg�d

h_i
j�k lnmporqtsvu�w�w^x'u�yvz,{�x|w^x|}DuN~���}D��}Iu#���M��u&�'���_���
�6�*�*�T�����������
�A�|�A�N���N���G���*���������
 ¢¡¤£A���^�7�
¥7¦*§*¨*©

ª_«*«7¬ ­¯®n°?®6±Y²�³�´^µ
³R¶¸·
´^¹�°�®�º,®n»½¼N¾�¿R¼N´�¶2À�Á*ÂI·
ÂIµ&Ã
Ä<Å�Æ�Ç,ÈÊÉnÇ�Æ�ËTÌÎÍMÏÐÅ7ÍAÈÊÑ'Í*ÒMÇ
Ó_ÌÎË'Å7ÍAÔ,Ç,Õ&ÖMÉnÇ,Ô7Ò*ÍMÌ�Ô,Å,×
Ø¯Ù
Ú�Û�Ü_Ý[ÞnØ?ßGàDáMâAãåäpæAç.è�Ù�ÜRéRç|ÝTêëÛ�ìîítïMÜ_ð�ñ�òóã
ô8õ�ö*÷|ø7õMùûú7ü*ü�ý

þ ÿ���� ���	��

�����������	����������

 �"!��#�%$'&)(*!+&,! -.�0/1���2��(
354 687%9":"9�;89*<*=,>@?BA"6C9�3EDF6C4�:G6.4
H#6.I0J	<K9"L
M N*O0O�PQM'R8S8N�TUMQO�V1W�W�P1W2X�YEZ�[�[]_^`V a*VFb1ScT�PdY
eBf g*h0i]j'klj�mon"j2prq�s�s
t

u.v�w�x y�z|{~}c�	�*�'����� �,�	���%yr�����l�*�"�#�*�Q�'���C�
�
�#�)�#�C� � ���
�2�.�0�������¡ £¢1¤'��¥ �_¦¨§1�	§Q©
�0�%���
ª «8¬ ­#® ¯1°�±³²�´lµ	´�¶�¶
·

¸C¹2º¼» ½�¾	¿ÁÀ
Â¼Ã*Ä%Ål¾%Æ£Ç'È*Ä	É�¾	ÊoË�ÌcÇQÄ	Í�¾�Î,ÈQÏ*È�ËCÐ¼ÌÒÑ�ÇQÄ
ÓÁÔ�Ó�Õ�Öl×�Ø�ÙlÚÜÛÝÖQÞ�ßáà�ßcâäãlß�ÖFå
æèç.é�â|êrëFì�Ö ílß�î
ïÁð#ñ8òFó*ô³òQõ÷ö*ø�ùäô³òFú5ù�û
üþý%ð#ÿ��1òQò1õ¼ñcó���ùlü����	ò
�
	���
���
�
���������������������
���������	! "�����$#% '&)(*����
��
+�,�-/.!0
132546137�8:9<;*;�=?>�@A13.�>�,B7�C�DE,B7�-F4325437�@A4BG
HJI�K�IMLONQP�R*R�S�TVU�WXWXWZYE[B\^]�I*N/_a`6b�[*cAd�_aN!e
f�gFh�i5ikjAl�m�ionJp�qsrutwv!m�ixj'yzqapwt?{F|�}�~B����}"����|

���3�"� �$�����O�3�!�������"�������s�/�����^�a���s�����w���'�!�'���'�s�
���a���M�� ¢¡O��£¥¤§¦�����¨ª©��/«�¬®­�¯�©B°�°²±³�B°5�/«?´�µ
¶!·¹¸§ºz»½¼¿¾%À3ÁkÂaÃ�Ä�Å�¾�Æ�Ç?Â�ÈBÄ�Â�É^Ê�ÆOËBÌ'ÆOÍsÎVÏ%Ð§ÏOÇwÈ*Ì
Ñ Ò�Ó5Ô"Ó5Õ*Ö�×½Ô*Ø�Õ*Ù Ú�Õ*Ø�ÓOÛ/ÜoÝ ÞQÕ"Ó�ßáà�ÙMâ�ã
äoåBæFç*è�éëê<ì�í îBï�ð�ñ
ç'ò*óxô
õ�ósæEösî�îBï*÷

ø�ù3ú"û üuý þ�ý<ÿ��������	��
^ý
�����������������¿ý þ�ý��
���������
�! �"�#%$'&)(*$'+	,�$.-/(10�243657&98;:�<>=?$!0�2	5�@�AB(1+
CEDGF%HIFKJLFNM OQP�R�PLM)F	SUTVP�WKHYX%Z []_^
`�a6bdc
egfVf c
h7ikj�l�mon'pqc
h7irirl�sLt*uGv'mwt*hxs
y�zY{�|}zY~��'���������x�	�L�I���Y�%���	�Y�x���

���I�x� �/���d�*�N�	�������������w }¡L¢¤£¦¥!§I�G¨'��©�£¦ª� *�'¡��w��«
¬x­�®�¯�°Y±r®�²x³µ´x¶7°'·1®)¸7¹%ºY¯�¯�°Y»w¼�®)¸�ºY¼�¶/½U´x´7·}®�¸7½¿¾�°
ÀkÁLÁ�Â�Ã�Ä�Å¿Æ�ÇÉÈ7Ã�ÊwÈ�ËÍÌgÎGÏ'ÈxÐ�ÑÓÒÔÈxÐ�ÕLÅ%ÄLÊwÄ�Ö�Ë
×�ØYÙ�Ú}Ø!Û)ÜLÝYÞ7ÞxÞ

ß�à'áGâ ãåäçæéè�ê�ë!ìÓãíäïîrèoðxè�ñIê�ìÓæòäôógè�õ�ö¿êGñI÷	ë�ø�ùNì
úGû�ü7ýÿþ��������	�
������
çþ����Yþ������	�
����������
������������;ü��
 �!#"$!#%�&$'�"$()!* �%$+,"$-.!�/�&1032�45 .687�+9/:!;!#%�<=!#>@?A'�%
B�C�DFE)G.CIHKJLGNMKC#O�P8G�M1QSR�P�T#C�UVMKJ3HXW	J�YKD�O�CIH1YKC�Z.J3H
[X\�]#^�_)`�\�acb�d�egf
[ih�j�kml1d)noe8prq�s8s�s�t

uLv$w8x y@z|{�}�~��Vz5� y�~	����� �������
�8�:�:��� �:�������*� �L���;�;�1������� �K���V�:���L���1�������)���m�������;�����
 �¡

¢¤£.¥8¦ §�¨L©.ª�«:¬�­¯®�°�±²ªg©g³�´�µ�´¤¶�·V¸8¹8º�º�ª�¨Iµ¼»)ª1¨²½�¾K¿3·�À�µ#Á
Â�Ã�Ä�Å�Æ�Ç)Å�ÈÊÉVÅgË3Ä�Ì�ÆÎÍÐÏÑÅ�ÃÒË3Ä�Ó�ÆÕÔNÖ¤×�ÖÙØNÍÛÚKÜgËÒÓ8Æ
Ý@Þoß�ß*à8á*âäã åXæ	çAà�è é²ê�ê�ê
ë�ì�í:í¤î�ï ð:ð�ñ�ñ�ñ*ò ó;ô�õ�ò ö�ôKó�ò ÷�ø1ö8ð¤î.ögù�ð�ú�ûmô�ì8ð:ö8ü9ýÙð�þ

ÿ������ ����	
����
��������������������! #"$���%�& '�)(*�,+,�.-/�.+1032
465/7
598;:'<>=?8�@.8;:BA1@DC.E
5/7F:'=�G H6I�I�IKJ�LM@.7N=�O
P!Q3R�S9TVUXW>Y[Z�\!]_^�`aQ3bdc_e�f3fhgXi!j,k�g.j,lmeon*UXWM^
p�q'r3s

tvu,u3w x�y z|{~}����
��y����$���m�!�
��y ��y_���.�������!�[�
y ��y
�����D���.�����>�������?�����!�����X�%������ D�¢¡��% D£¥¤$¦¨§
©Mª6«�ª6¬®­�¯;«'°!±�«�²�©�³3´¶µ>·¸· ¹�±�º_»,¬,¬'­_¯�¼F°F©'½
¾3¿,À/Á&Â$ÃMÄ6Å�Æ_Ç?ÈmÉ,Ê/È3Ë�Æ
ÇXÌ�Í,ÎMÇ�ÏDÐ!Æ�ÑdÒ3Ó�Ò!Ô�Á�Ç�Ï'Ï'ÏmÕ

Ö�×3Ø'Ù Ú�ÛNÜÞÝ,ßmà�á
âäã�å,Ý!æ�ç!è�é
á�ê�ã�ëÞè.ìmá�íîãNïVð%ñ9è�á�ò�ã
ó�ô'õ_ômö>÷�ø&ùûúDüýúXþ_ÿ������o÷���þ
ü��	��
dþ�
�
��������
��������������� �	!#"%$%&(')'*!#",+.-�/102�3�24�!#"5$5�6/17
8:92;�<�=?>A@CB*D19�E�>GFIH�B @JH�KMLONP<?<5QSRGTUHC>�RG92K%V
WYX[Z?\G]�^�]�Z`_�][a�b2bMcCd3d3d�e`d3d2f�aMg�h3h�i�c

jlk3m�n o:pqoYrSs?tMrSu1vxwCuMy{z|p~}��1r����5wCu1vx���Y�3���
�5�2���2���	�	�`���	���`� �I��� �1�������2���%�[�������`�
�5 �¡?¢�£�£U¤�¥§¦1¨1©�¡?ª~«#¬M£®­°¯[©�«~±A¦?«A£� �¦M²�«�¥G¡2¦M²�³
´¶µ3·1¸�¹�º�¹�·1»�¹�µ3·*¼�¹�»�½`·1µ?¾Sµ�¿2ÀÁµ`¸�Â�ÃCÄ�¹[»�ÅAÆ
Ç¶ÈAÉ§Ê Ë2ÌSÊ�ÍÏÎÑÐ Ë`Ò�Ó`Ð�Ò2Ê¶Ð�Ë`ÍÕÔUÖ�×AÌSÊ�ØÙ×�Ú1Û�Ü3Ü`Ý

$�)UDPHZRUN�IRU�3UDFWLFDO��$XWRPDWHG�%ODFN�%R[�7HVWLQJ�RI�

&RPSRQHQW�%DVHG�6RIWZDUH�

�

� 6WHSKHQ�(GZDUGV�

� 'HSW��RI�&RPSXWHU�6FLHQFH�

� 9LUJLQLD�7HFK�

� ����0F%U\GH�+DOO�

� %ODFNVEXUJ��9$�������������86$�

� ����������������

� HGZDUGV#FV�YW�HGX�

$%675$&7
7KLV SDSHU EULHIO\ VNHWFKHV D JHQHUDO VWUDWHJ\ IRU DXWRPDWHG
EODFN�ER[WHVWLQJ RI VRIWZDUH FRPSRQHQWV WKDW LQFOXGHV�

DXWRPDWLF JHQHUDWLRQ RI FRPSRQHQW WHVW GULYHUV� DXWRPDWLF

JHQHUDWLRQ RI EODFN�ER[WHVW GDWD� DQG DXWRPDWLF RU VHPL�

DXWRPDWLF JHQHUDWLRQ RI FRPSRQHQW ZUDSSHUV WKDW VHUYH DV

WHVW RUDFOHV� 7KLV UHVHDUFK LQ SURJUHVV XQLILHV VHYHUDO

WKUHDGV RI WHVWLQJ UHVHDUFK� DQG SUHOLPLQDU\ ZRUN LQGLFDWHV
WKDW SUDFWLFDO OHYHOV RI WHVWLQJ DXWRPDWLRQ DUH SRVVLEOH�

.H\ZRUGV
WHVW GULYHUV� WHVW RUDFOHV� VHOI�FKHFNLQJ VRIWZDUH� WHVW

DGHTXDF\� LQWHJUDWLRQ WHVWLQJ� PRGXODU FRQVWUXFWLRQ� EXLOW�LQ

WHVW

� ,1752'8&7,21
0RGXODU VRIWZDUH FRQVWUXFWLRQ WKURXJK WKH DVVHPEO\ RI

LQGHSHQGHQWO\ GHYHORSHG FRPSRQHQWV LV D SRSXODU DSSURDFK

LQ VRIWZDUH HQJLQHHULQJ� $W WKH VDPH WLPH� FRPSRQHQW�

EDVHG DSSURDFKHV WR VRIWZDUH FRQVWUXFWLRQ KLJKOLJKW WKH

QHHG IRU GHWHFWLQJ IDLOXUHV WKDW DULVH DV D UHVXOW RI
PLVFRPPXQLFDWLRQ DPRQJ FRPSRQHQWV� ,Q FRPSRQHQW�

EDVHG VRIWZDUH� D FRPSRQHQW
V LQWHUIDFH �RU VSHFLILFDWLRQ� LV

VHSDUDWHG IURP LWV LPSOHPHQWDWLRQ DQG LV XVHG DV D FRQWUDFW

EHWZHHQ WKH FOLHQWV DQG WKH LPSOHPHQWHU�V� RI WKH

FRPSRQHQW >�@� ,Q SUDFWLFH� IDLOXUHV LQ FRPSRQHQW�EDVHG

V\VWHPV RIWHQ DULVH EHFDXVH RI VHPDQWLF LQWHUIDFH YLRODWLRQV
DPRQJ FRPSRQHQWV²ZKHUH RQH SDUW\ EUHDNV WKH FRQWUDFW�

7KHVH HUURUV PD\ QRW VKRZ XS XQWLO V\VWHP LQWHJUDWLRQ�

ZKHQ WKH\ DUH PRUH H[SHQVLYH WR LGHQWLI\ DQG IL[� (YHQ

ZRUVH� LQWHUQDO YLRODWLRQV PD\ QRW EH GLVFRYHUHG XQWLO DIWHU

GHSOR\PHQW� $V D UHVXOW� FRPSRQHQW�EDVHG GHYHORSPHQW
LQFUHDVHV WKH QHHG IRU PRUH WKRURXJK WHVWLQJ DQG IRU

DXWRPDWHG WHFKQLTXHV WKDW VXSSRUW WHVWLQJ DFWLYLWLHV�

7KLV SDSHU RXWOLQHV D JHQHUDO VWUDWHJ\ IRU DXWRPDWHG EODFN�

ER[WHVWLQJ RI VRIWZDUH FRPSRQHQWV� 7KH VWUDWHJ\ LV D

WKUHH�SURQJHG DWWDFN� FRYHULQJ DXWRPDWLF JHQHUDWLRQ RI

FRPSRQHQW WHVW GULYHUV� DXWRPDWLF JHQHUDWLRQ RI WHVW GDWD�
DQG DXWRPDWLF RU VHPL�DXWRPDWLF JHQHUDWLRQ RI ZUDSSHUV

VHUYLQJ WKH UROH RI WHVW RUDFOHV� 7KLV ZRUN XQLILHV VHYHUDO

WKUHDGV RI WHVWLQJ UHVHDUFK LQWR D FRKHUHQW ZKROH� :KLOH
PDQ\ LQWHUHVWLQJ DQG WRXJK UHVHDUFK TXHVWLRQV UHPDLQ RSHQ�

SUHOLPLQDU\ UHVXOWV VXJJHVW SUDFWLFDO OHYHOV RI DXWRPDWLRQ

DUH DFKLHYDEOH IRU FRPSRQHQWV WKDW LQFOXGH IRUPDO

EHKDYLRUDO GHVFULSWLRQV�

6HFWLRQ � GHVFULEHV WKH DVVXPSWLRQV DERXW FRPSRQHQWV WKDW

DUH QHFHVVDU\ IRU WKH DSSURDFK WR ZRUN� DQG SUHVHQWV DQ
H[DPSOH FRPSRQHQW VSHFLILFDWLRQ VDWLVI\LQJ WKHVH

DVVXPSWLRQV� 6HFWLRQ � GLVFXVVHV D FULWLFDO SLHFH RI WKH

VWUDWHJ\ SUHVHQWHG KHUH� WKH XVH RI SUH� DQG SRVWFRQGLWLRQ

FKHFNLQJ ZUDSSHUV DURXQG WKH FRPSRQHQW XQGHU WHVW�

%XLOGLQJ RQ WKLV IRXQGDWLRQ� 6HFWLRQ � OD\V RXW WKH YLVLRQ
IRU DQ DXWRPDWHG WHVWLQJ IUDPHZRUN� 6HFWLRQ � EULHIO\

GLVFXVVHV UHODWHG ZRUN� IROORZHG E\ RSHQ UHVHDUFK LVVXHV

DQG IXWXUH GLUHFWLRQV LQ 6HFWLRQ ��

� $1 (;$03/(&20321(17� 21(�:$< /,67
)RU WKH SURSRVHG VWUDWHJ\ WR ZRUN� ZKDW DVVXPSWLRQV DUH

PDGH DERXW FRPSRQHQWV")LUVW� D FRPSRQHQW PXVW KDYH D
ZHOO�GHILQHG LQWHUIDFH WKDW LV FOHDUO\ GLVWLQJXLVKDEOH IURP

LWV LPSOHPHQWDWLRQ� 6HFRQG� LQ RUGHU WR DXWRPDWH WKH

SURFHVV RI JHQHUDWLQJ WHVW GDWD RU FKHFNLQJ WHVW UHVXOWV� RQH

PXVW KDYH VRPH GHVFULSWLRQ RI WKH LQWHQGHG EHKDYLRU RI WKH

FRPSRQHQW XQGHU WHVW� 7KH LQLWLDO UHTXLUHPHQW IRU WKH

UHVHDUFK GHVFULEHG KHUH LV WKDW D FRPSRQHQW PXVW KDYH D
IRUPDOO\ VSHFLILHG LQWHUIDFH GHVFULEHG LQ D PRGHO�EDVHG

VSHFLILFDWLRQ ODQJXDJH� 5(62/9(>��@ KDV EHHQ VHOHFWHG

DV WKH VSHFLILFDWLRQ ODQJXDJH IRU WKLV UHVHDUFK� DOWKRXJK

RWKHU PRGHO�EDVHG VSHFLILFDWLRQ ODQJXDJHV >��@ DUH DOVR

DSSOLFDEOH� 7KH FKRLFH RI VSHFLILFDWLRQ ODQJXDJH ZDV PDGH
IRU WZR SUDJPDWLF UHDVRQV� WKH UHVHDUFKHUV LQYROYHG ZHUH

IDPLOLDU ZLWK WKH ODQJXDJH� DQG XVLQJ LW SURYLGHV D QDWXUDO

FROODERUDWLRQ SDWK IRU ILHOGLQJ WRROV� 5HVHDUFKHUV DW 7KH

2KLR 6WDWH 8QLYHUVLW\ DQG DW :HVW 9LUJLQLD 8QLYHUVLW\ DUH

FROODERUDWLQJ RQ D 6RIWZDUH &RPSRVLWLRQ :RUNEHQFK EDVHG

RQ 5(62/9(WHFKQRORJ\ WKDW LV DQ LGHDO HQYLURQPHQW LQ
ZKLFK WR HYDOXDWH DQG DSSO\ WKH WHVWLQJ WRROV GHVFULEHG LQ

WKLV SDSHU�

$OWKRXJK WKH LQLWLDO UHVHDUFK UHTXLUHPHQW LV WKDW DOO

FRPSRQHQWV KDYH IRUPDOO\ VSHFLILHG LQWHUIDFHV� WKH WRROV

PDNLQJ XS WKH DSSURDFK GR SURYLGH JUDFHIXO IDOOEDFN
SRVLWLRQV LI RQO\ VHPL�IRUPDO RU LQIRUPDO FRPSRQHQW

EHKDYLRUDO GHVFULSWLRQV DUH DYDLODEOH� ,QIRUPDO GHVFULSWLRQV

UHTXLUH PRUH KXPDQ LQWHUYHQWLRQ LQ WKH SURFHVV� KRZHYHU�

VLQFH WKHUH LV QR HDV\ ZD\ WR DXWRPDWLFDOO\ H[WUDFW

EHKDYLRUDO UHTXLUHPHQWV� 7KH HQG UHVXOW LV D VWUDWHJ\ WKDW

FDQ VWLOO EH DSSOLHG� HYHQ ZLWKRXW DQ\ IRUPDO EHKDYLRUDO
GHVFULSWLRQV� EXW DW WKH FRVW RI UHGXFHG DXWRPDWLRQ DQG

JUHDWHU SURJUDPPHU LQWHUYHQWLRQ�

7R JURXQG WKH GLVFXVVLRQ RI IRUPDOO\ VSHFLILHG FRPSRQHQWV

LQ WKLV SDSHU�)LJXUH � SUHVHQWV WKH 5(62/9(VSHFLILFDWLRQ

RI D RQH�ZD\ OLVW FRPSRQHQW WKDW ZDV RULJLQDOO\ GHVFULEHG
E\ 6LWDUDPDQ HW DO� >��@� 7KLV JHQHULF FRPSRQHQW LV

SDUDPHWHUL]HG E\ WKH W\SH RI LWHP LW ZLOO FRQWDLQ� $ RQH�

ZD\ OLVW LV DQ RUGHUHG VHTXHQFH RI LWHPV� DOO RI WKH VDPH

W\SH� 2QH PD\ PRYH IRUZDUG LQ WKH VHTXHQFH� DFFHVVLQJ

LQGLYLGXDO HOHPHQWV LQ WXUQ� RU MXPS WR HLWKHU HQG RI WKH

VHTXHQFH� $ VLPLODU FRPSRQHQW WKDW VXSSRUWV EL�GLUHFWLRQDO
PRYHPHQW LV SUHVHQWHG E\ =ZHEHQ >��@� $ RQH�ZD\ OLVW

PD\ EH LPSOHPHQWHG DV D VLQJO\�OLQNHG FKDLQ RI

FRQFHSW 2QHB:D\B/LVW
FRQWH[W

JOREDO FRQWH[W
IDFLOLW\ 6WDQGDUGB%RROHDQB)DFLOLW\

SDUDPHWULF FRQWH[W
W\SH ,WHP

LQWHUIDFH

W\SH /LVW LV PRGHOHG E\ �
OHIW � VWULQJ RI PDWK>,WHP@�
ULJKW � VWULQJ RI PDWK>,WHP@

�
H[HPSODU V
LQLWLDOL]DWLRQ

HQVXUHV V �HPSW\BVWULQJ� HPSW\BVWULQJ�

RSHUDWLRQ 0RYHB7RB6WDUW �DOWHUV V � /LVW�
HQVXUHV V �HPSW\BVWULQJ� �V�OHIW
 �V�ULJKW�

RSHUDWLRQ 0RYHB7RB)LQLVK �DOWHUV V � /LVW�
HQVXUHV V ��V�OHIW
 �V�ULJKW� HPSW\BVWULQJ�

RSHUDWLRQ $GYDQFH �DOWHUV V � /LVW�
UHTXLUHV V�ULJKW � HPSW\BVWULQJ
HQVXUHV WKHUH H[LVWV [� ,WHP

�V�OHIW �V�OHIW
 � [! DQG �V�ULJKW � [!
 V�ULJKW�

RSHUDWLRQ $GGB5LJKW �DOWHUV V � /LVW� FRQVXPHV [� ,WHP�
HQVXUHV V ��V�OHIW� � �[!
 �V�ULJKW�

RSHUDWLRQ 5HPRYHB5LJKW �DOWHUV V � /LVW� SURGXFHV [� ,WHP�
UHTXLUHV V�ULJKW � HPSW\BVWULQJ
HQVXUHV V�OHIW �V�OHIW DQG �V�ULJKW � [!
 V�ULJKW

RSHUDWLRQ 6ZDSB5LJKWV �DOWHUV V� � /LVW� DOWHUV V� � /LVW�
HQVXUHV V��OHIW �V��OHIW DQG V��ULJKW �V��ULJKW DQG

V��OHIW �V��OHIW DQG V��ULJKW �V��ULJKW

RSHUDWLRQ $WB6WDUW �SUHVHUYHV V � /LVW� � %RROHDQ
HQVXUHV $WB6WDUW LII V�OHIW HPSW\BVWULQJ

RSHUDWLRQ $WB)LQLVK �SUHVHUYHV V � /LVW� � %RROHDQ
HQVXUHV $WB)LQLVK LII V�ULJKW HPSW\BVWULQJ

HQG 2QHB:D\B/LVW

)LJXUH �²$ 5(62/9(6SHFLILFDWLRQ IRU 2QH�:D\ /LVW

G\QDPLFDOO\ DOORFDWHG QRGHV� DV D G\QDPLFDOO\ DOORFDWHG

DUUD\� RU E\ EXLOGLQJ RQ RWKHU FRPSRQHQWV OLNH D VWDFN� D

TXHXH� RU D YHFWRU�

7KH PDWKHPDWLFDO PRGHO RI WKH RQH�ZD\ OLVW VKRZQ LQ

)LJXUH � LV D SDLU RI PDWKHPDWLFDO VWULQJV �ILQLWH VHTXHQFHV��

7KHUH LV QR H[SOLFLW QRWLRQ RI D ³FXUUHQW SRVLWLRQ´ RU

³FXUVRU�´ ,QVWHDG� WKH FXUUHQW ORFDWLRQ LV LPSOLFLW LQ WKH IDFW

WKDW WKH VWULQJ LV SDUWLWLRQHG LQWR OHIW DQG ULJKW VHJPHQWV�

,QWXLWLYHO\� LWHPV WR WKH ³OHIW´ DUH WKRVH WKDW DUH ³EHKLQG´
WKH FXUUHQW ORFDWLRQ �FORVHU WR WKH IURQW RI WKH VHTXHQFH��

ZKLOH WKRVH WR WKH ³ULJKW´ DUH LQ IURQW �WRZDUG WKH UHDU��

7KH SUHFRQGLWLRQV �UHTXLUHV FODXVHV� DQG SRVWFRQGLWLRQV

�HQVXUHV FODXVHV� RI HDFK RSHUDWLRQ VXSSRUWHG E\ WKH

FRPSRQHQW DUH GHVFULEHG LQ WHUPV RI WKLV PDWKHPDWLFDO

PRGHO� ,Q SRVWFRQGLWLRQV� WKH SRXQG VLJQ ��� LV XVHG WR
UHIHU WR WKH LQFRPLQJ YDOXH RI D SDUDPHWHU� UDWKHU WKDQ LWV

RXWJRLQJ YDOXH�

� 7+(&(175$/)2&86� %8,/7�,1 7(67

&3%,/,7,(6

7KH FRUQHUVWRQH RI WKH DXWRPDWHG WHVWLQJ IUDPHZRUN LV D

PLFUR�DUFKLWHFWXUH IRU SURYLGLQJ EXLOW�LQ WHVW �%,7� VXSSRUW
LQ VRIWZDUH FRPSRQHQWV� 7KLV DUFKLWHFWXUH EXLOGV RQ

FXUUHQW UHVHDUFK LQ V\VWHPDWLFDOO\ GHWHFWLQJ LQWHUIDFH

YLRODWLRQV LQ FRPSRQHQW�EDVHG VRIWZDUH >�@� ,Q HVVHQFH�

HDFK VRIWZDUH FRPSRQHQW SURYLGHV D VLPSOH ³KRRN´

LQWHUIDFH �ZLWK QR UXQ�WLPH RYHUKHDG� WKDW FDQ EH XVHG LQ
DGRUQLQJ WKH FRPSRQHQW ZLWK VRSKLVWLFDWHG %,7

FDSDELOLWLHV�)LJXUH � LOOXVWUDWHV WKLV LGHD� 6RSKLVWLFDWHG

³GHFRUDWRU´ FRPSRQHQWV �ZUDSSHUV� WKDW SURYLGH D QXPEHU

RI VHOI�FKHFNLQJ DQG VHOI�WHVWLQJ IHDWXUHV FDQ WKHQ EH XVHG

WR HQFDVH WKH XQGHUO\LQJ FRPSRQHQW�

7KH LQQRYDWLYH SURSHUWLHV RI WKLV VWUDWHJ\ DUH�

x %,7 ZUDSSHUV DUH FRPSOHWHO\ WUDQVSDUHQW WR FOLHQW DQG

FRPSRQHQW FRGH�

x %,7 ZUDSSHUV FDQ EH LQVHUWHG RU UHPRYHG ZLWKRXW

FKDQJLQJ FOLHQW FRGH �RQO\ D GHFODUDWLRQ QHHG EH

PRGLILHG�� 7KLV FDSDELOLW\ GRHV QRW UHTXLUH D
SUHSURFHVVRU� DQG FDQ EH XVHG LQ PRVW FXUUHQW

ODQJXDJHV�

x :KHQ %,7 VXSSRUW LV UHPRYHG� WKHUH LV QR UXQ�WLPH FRVW

WR WKH XQGHUO\LQJ FRPSRQHQW�

x %RWK LQWHUQDO DQG H[WHUQDO DVVHUWLRQV DERXW D

FRPSRQHQW
V EHKDYLRU FDQ EH FKHFNHG�

x 3UHFRQGLWLRQ� SRVWFRQGLWLRQ� DQG DEVWUDFW LQYDULDQW

FKHFNV FDQ EH ZULWWHQ LQ WHUPV RI WKH FRPSRQHQW¶V

DEVWUDFW PDWKHPDWLFDO PRGHO >�@� UDWKHU WKDQ GLUHFWO\ LQ

WHUPV RI WKH FRPSRQHQW
V LQWHUQDO UHSUHVHQWDWLRQ

VWUXFWXUH�

x &KHFNLQJ FRGH LV FRPSOHWHO\ VHSDUDWHG IURP WKH
XQGHUO\LQJ FRPSRQHQW�

x 9LRODWLRQV DUH GHWHFWHG ZKHQ WKH\ RFFXU DQG EHIRUH WKH\

FDQ SURSDJDWH WR RWKHU FRPSRQHQWV� WKH VRXUFH RI WKH

YLRODWLRQ FDQ EH UHSRUWHG GRZQ WR WKH VSHFLILF

PHWKRG�RSHUDWLRQ UHVSRQVLEOH�

x 5RXWLQH DVSHFWV RI WKH %,7 ZUDSSHUV FDQ EH
DXWRPDWLFDOO\ JHQHUDWHG�

x 7KH DSSURDFK ZRUNV ZHOO ZLWK IRUPDOO\ VSHFLILHG

FRPSRQHQWV� EXW GRHV QRW UHTXLUH IRUPDO VSHFLILFDWLRQ�

x 7KH DSSURDFK SURYLGHV IXOO REVHUYDELOLW\ RI D

FRPSRQHQW
V LQWHUQDO VWDWH ZLWKRXW EUHDNLQJ
HQFDSVXODWLRQ IRU FOLHQWV�

x $FWLRQV WDNHQ LQ UHVSRQVH WR GHWHFWHG YLRODWLRQV DUH

VHSDUDWHG IURP WKH %,7 ZUDSSHU FRGH�

)LJXUH � LOOXVWUDWHV D FRPSRQHQW HQFDVHG LQ D WZR�SO\ %,7

ZUDSSHU� 7KH LQQHU OD\HU RI WKH ZUDSSHU LV UHVSRQVLEOH IRU

GLUHFWO\ DQG VDIHO\ DFFHVVLQJ WKH FRPSRQHQW
V LQWHUQDOV�
SHUIRUPLQJ LQWHUQDO FRQVLVWHQF\ FKHFNV� DQG WKHQ

FRQYHUWLQJ WKH LQWHUQDO VWDWH LQIRUPDWLRQ LQWR D SURJUDP�

PDQLSXODEOH PRGHO RI WKH FRPSRQHQW
V DEVWUDFW VWDWH >�@�

7KH RXWHU OD\HU LV UHVSRQVLEOH IRU XVLQJ WKLV PRGHO WR FKHFN

WKDW FOLHQWV XSKROG WKHLU REOLJDWLRQV LQ XVLQJ WKH XQGHUO\LQJ
FRPSRQHQW� WR FKHFN WKDW WKH FRPSRQHQW PDLQWDLQV DQ\

LQYDULDQW SURSHUWLHV LW DGYHUWLVHV� DQG WR GRXEOH�FKHFN WKH

UHVXOWV RI HDFK RSHUDWLRQ WR WKH H[WHQW GHVLUHG IRU VHOI�

WHVWLQJ SXUSRVHV� &OLHQW FRGH DFFHVVHV WKH FRPSRQHQW MXVW

DV LI LW ZHUH XQDGRUQHG�

7KH %,7 VWUDWHJ\ LV GHVLJQHG WR SURYLGH PD[LPDO VXSSRUW
GXULQJ XQLW WHVWLQJ� GHEXJJLQJ� DQG LQWHJUDWLRQ WHVWLQJ� %\

RXWILWWLQJ D FRPSRQHQW ZLWK D %,7 ZUDSSHU GXULQJ XQLW

WHVWLQJ� PXFK PRUH WKRURXJK WHVWLQJ FDQ EH DFKLHYHG ZLWK

WKH DG KRF VWUDWHJLHV PRVW GHYHORSHUV HPSOR\�)RU HYHU\

WHVW FDVH H[HFXWHG� D ODUJH QXPEHU RI LQWHUQDO FRQVLVWHQF\

FKHFNV DUH SHUIRUPHG� DQ\ RQH RI ZKLFK KDV WKH SRWHQWLDO RI
UHYHDOLQJ HUURUV� 6LQFH WKHVH FKHFNV DUH DXWRPDWLFDOO\

SHUIRUPHG IRU DQ\ DQG DOO RSHUDWLRQV H[HFXWHG E\ WKH

FRPSRQHQW LQ HDFK WHVW FDVH� WKH\ KDYH WKH HIIHFW RI

PXOWLSO\LQJ WKH WHVWHU
V DELOLW\ WR GHWHFW HUURUV� :KHQ HUURUV

DUH IRXQG� WKH IXOO YLVLELOLW\ RI LQWHUQDO VWDWH SURYLGHG E\ WKH

%,7 VWUDWHJ\ LV KHOSIXO GXULQJ GHEXJJLQJ� ,Q SDUWLFXODU� WKH

&RPSRQHQW
�

&OLHQW ,QWHUIDFH

%,7 $FFHVV

)LJXUH �±&RPSRQHQW 3URYLGHV ³+RRNV́

IRU %,7 ,QIUDVWUXFWXUH

VWUDWHJ\ SURYLGHV WKH SURJUDPPHU ZLWK DGGLWLRQDO

FDSDELOLWLHV IRU ERWK LQSXW DQG RXWSXW RI LQWHUQDO VWDWH

LQIRUPDWLRQ� DV ZHOO DV WKH DELOLW\ WR PRGLI\ LQWHUQDO VWDWH

LQIRUPDWLRQ IRU GHEXJJLQJ SXUSRVHV� 1RQH RI WKHVH

FDSDELOLWLHV UHTXLUH DQ\ DGGLWLRQDO GHVLJQ RU FRGLQJ WLPH

IURP WKH GHYHORSHU� EH\RQG WKH LQFOXVLRQ RI WKH RULJLQDO
%,7 KRRNV LQ WKH XQGHUO\LQJ FRPSRQHQW�)LQDOO\� GXULQJ

LQWHJUDWLRQ WHVWLQJ� %,7 ZUDSSHUV FDQ SURYLGH ILUHZDOOV

EHWZHHQ FRPSRQHQWV IRU LQFUHPHQWDO LQWHJUDWLRQ� $V QHZ

XQLWV DUH DGGHG WR WKH V\VWHP� WKH ZUDSSHUV ZLOO GHWHFW DQ\

XQIRUHVHHQ LQWHUDFWLRQV� 7KLV VWUDWHJ\ VXSSRUWV ERWWRP�XS�

WRS�GRZQ� DQG K\EULG LQFUHPHQWDO LQWHJUDWLRQ VWUDWHJLHV�

� 7+(9,6,21� $1 $8720$7(' 7(67,1*

)5$0(:25.
7KH %,7 LQIUDVWUXFWXUH SURYLGHV D QDWXUDO PHFKDQLVP IRU

VXSSRUWLQJ VHPL� RU IXOO\ DXWRPDWLF WHVWLQJ� 6LPSO\ SXW� WKH

IUDPHZRUN IRU DXWRPDWHG WHVWLQJ GHVFULEHG KHUH UHVWV RQ

WKUHH OHJV�

x $XWRPDWLF �RU VHPL�DXWRPDWLF� JHQHUDWLRQ RI D

FRPSRQHQW
V %,7 ZUDSSHU�

x $XWRPDWLF JHQHUDWLRQ RI D FRPSRQHQW
V WHVW GULYHU�

x $XWRPDWLF �RU VHPL�DXWRPDWLF� JHQHUDWLRQ RI WHVW FDVHV

IRU WKH FRPSRQHQW�

$OO WKUHH JHQHUDWLRQ VWUDWHJLHV UHO\ RQ WKH VDPH

LQIRUPDWLRQ� D FRPSOHWH EHKDYLRUDO GHVFULSWLRQ RI WKH

FRPSRQHQW
V LQWHUIDFH FRQWUDFW� %\ FRPELQLQJ WKHVH

JHQHUDWLRQ VWUDWHJLHV� LW LV SRVVLEOH WR FUHDWH D WHVW GULYHU� D

WHVW VXLWH� DQG D %,7 ZUDSSHU GLUHFWO\ IURP D FRPSRQHQW
V

VSHFLILFDWLRQ� ,I WKH %,7 ZUDSSHU DOVR SURYLGHV

FRPSUHKHQVLYH FKHFNV RQ WKH SRVWFRQGLWLRQV RI DOO H[SRUWHG

RSHUDWLRQV²LQ HIIHFW� DFWLQJ DV D WHVW RUDFOH²WKHQ WKH
FRPELQDWLRQ ZLOO SURGXFH D KLJKO\ DXWRPDWHG WHVWLQJ DQG

GHEXJJLQJ FDSDELOLW\� DV RXWOLQHG LQ)LJXUH ��

*HQHUDWLQJ %,7 :UDSSHUV
:H KDYH GHVLJQHG DQG LPSOHPHQWHG D JHQHUDWRU WKDW XVHV

5(62/9(�VW\OH FRPSRQHQW VSHFLILFDWLRQV DQG &��

WHPSODWH LQWHUIDFHV WR JHQHUDWH %,7 ZUDSSHUV >��@� 7KH
XQGHUO\LQJ SULQFLSOHV IRU FUHDWLQJ VXFK ZUDSSHUV DUH

LQGHSHQGHQW RI DQ\ SDUWLFXODU VSHFLILFDWLRQ WHFKQLTXH RU

LPSOHPHQWDWLRQ ODQJXDJH� DQG WKH\ FDQ EH UHDGLO\ H[WHQGHG

WR RWKHU ODQJXDJHV >�@�

7KH H[WHUQDO LQWHUIDFH RI D %,7 ZUDSSHU LV LGHQWLFDO WR WKDW

RI WKH FRUUHVSRQGLQJ EDVH FRPSRQHQW� 6HPDQWLFDOO\� WKH\
GLIIHU LQ KRZ WKH\ EHKDYH ZKHQ HLWKHU WKH SUH� RU

SRVWFRQGLWLRQ RI VRPH RSHUDWLRQ LV YLRODWHG� ,Q SDUWLFXODU�

ZKHUH D UHJXODU FRPSRQHQW JXDUDQWHHV QRWKLQJ LI DQ

RSHUDWLRQ LV LQYRNHG XQGHU FRQGLWLRQV YLRODWLQJ LWV

SUHFRQGLWLRQ� D %,7 ZUDSSHU LQVWHDG JXDUDQWHHV LW ZLOO
SHUIRUP D VSHFLILF QRWLILFDWLRQ DFWLRQ� :H FDOO D %,7

ZUDSSHU WKDW RQO\ FKHFNV IRU SUHFRQGLWLRQ YLRODWLRQV D RQH�

ZD\ FKHFNLQJ ZUDSSHU�

&OLHQW

&RPSRQHQW

$EVWUDFW /D\HU�
FKHFN FOLHQW
REOLJDWLRQV�
RSHUDWLRQ

SRVWFRQGLWLRQV�
H[WHUQDO LQYDULDQWV

5HSUHVHQWDWLRQ

/D\HU� FKHFN IRU
LQWHUQDO FRQVLVWHQF\�
FRQYHUW WR DEVWUDFW
PRGHO

)LJXUH �±$:UDSSHU 6XUURXQGV WKH &RPSRQHQW�

,PSOHPHQWLQJ $OO 1HFHVVDU\ 7HVWLQJ)XQFWLRQV

5HSUHVHQWDWLRQ /D\HU

$EVWUDFW /D\HU

6LPLODUO\� D WZR�ZD\ FKHFNLQJ ZUDSSHU JXDUDQWHHV WR�

�� &DUU\ RXW LWV SUHFRQGLWLRQ QRWLILFDWLRQ DFWLRQ LI WKH

SUHFRQGLWLRQ GRHV QRW KROG� RU

�� (VWDEOLVK WKDW WKH SRVWFRQGLWLRQ LV WUXH XSRQ RSHUDWLRQ

FRPSOHWLRQ� RU

�� &DUU\ RXW LWV SRVWFRQGLWLRQ QRWLILFDWLRQ DFWLRQ LI WKH

SRVWFRQGLWLRQ GRHV QRW KROG�

%RWK RQH�ZD\ DQG WZR�ZD\ FKHFNLQJ ZUDSSHUV DUH

H[WUHPHO\ XVHIXO� 2QH�ZD\ ZUDSSHUV FRUUHVSRQG ZLWK WKH
WUDGLWLRQDO QRWLRQ RI D ³GHIHQVLYH VKHOO´ WKDW SURWHFWV D

FRPSRQHQW IURP HUUDQW FOLHQWV� 7ZR�ZD\ ZUDSSHUV� RQ WKH

RWKHU KDQG� DUH PRUH DNLQ WR ³VHOI�FKHFNLQJ´ RU ³VHOI�

YHULI\LQJ´ FRPSRQHQWV WKDW FRQILUP WKHLU RZQ ZRUN DV ZHOO

DV VSRWWLQJ HUURQHRXV FOLHQW EHKDYLRU�

:KLOH FRQVWUXFWLQJ %,7 ZUDSSHUV LV D VWUDLJKWIRUZDUG
SURFHVV� LW UDLVHV WKH TXHVWLRQ RI KRZ RQH FDQ DXWRPDWLFDOO\

JHQHUDWH SUH� DQG SRVWFRQGLWLRQ FKHFNV�)RU PRVW

FRPSRQHQWV� FKHFNLQJ HDFK SUHFRQGLWLRQ LV VWUDLJKWIRUZDUG

DQG FDQ WKXV EH DXWRPDWHG� %\ XVLQJ WKH PRGHO FRQYHUVLRQ

DSSURDFK GHVFULEHG LQ >�@� PDQ\ SUHFRQGLWLRQ DQG

SRVWFRQGLWLRQ DVVHUWLRQV FDQ EH FRQYHUWHG WR FRGH E\ D
VLPSOH WUDQVOLWHUDWLRQ SURFHVV�)RU H[DPSOH� FRPSOHWH SUH�

DQG SRVWFRQGLWLRQ FKHFNV FDQ EH DXWRPDWLFDOO\ JHQHUDWHG

IRU WKH RQH�ZD\ OLVW VSHFLILFDWLRQ LQ)LJXUH ��

+RZHYHU� VRPH DVVHUWLRQV DUH QRQ�WULYLDO�)RU H[DPSOH�

FRGH IRU FKHFNLQJ DVVHUWLRQV FRQWDLQLQJ TXDQWLILHUV FDQQRW

EH JHQHUDWHG PHFKDQLFDOO\ >�@� $V D UHVXOW� ZH

DUH H[SORULQJ WKH IROORZLQJ SRVVLELOLWLHV IRU

SURYLGLQJ JUHDWHU VXSSRUW IRU DXWRPDWHG %,7
ZUDSSHU FRQVWUXFWLRQ�

x 6HPL�$XWRPDWLF *HQHUDWLRQ� ,W LV SRVVLEOH

WR DXWRPDWLFDOO\ JHQHUDWH FKHFNLQJ FRGH IRU

PDQ\ SUHFRQGLWLRQV DV ZHOO DV IRU PDQ\

FODXVHV LQ SRVWFRQGLWLRQV� 2QH SRVVLEOH

DSSURDFK WR VROYLQJ WKLV SUREOHP LV WR
DXWRPDWLFDOO\ JHQHUDWH HYHU\WKLQJ WKDW LV

DSSURSULDWH� DQG DOORZ D KXPDQ WR SURYLGH

WKH FRGH IRU WKRVH FKHFNV WKDW FDQQRW EH

DXWRPDWHG� 2XU H[SHULHQFH ZLWK WKH

SURWRW\SH ZUDSSHU JHQHUDWRU LQGLFDWHV LW LV D

VLPSOH SURFHVV WR VHSDUDWH WKH KXPDQ�
FRQWULEXWHG FKHFNV IURP DOO RI WKH RWKHU

LQIUDVWUXFWXUDO FRGH QHFHVVDU\ WR VXSSRUW D

%,7 ZUDSSHU�)XUWKHU� WKH SHUVRQ FUHDWLQJ

WKH FKHFNV ZLOO ZULWH WKHP LQ DEVWUDFW

FOLHQW�OHYHO WHUPV²L�H�� WKH PDWKHPDWLFDO
PRGHO RI WKH FRPSRQHQW¶V VWDWH²LQVWHDG RI

LQ WHUPV RI WKH LPSOHPHQWDWLRQ RI WKH

FRPSRQHQW XQGHU WHVW >�@�

x '\QDPLF $VVHUWLRQ 9HULILFDWLRQ� $Q

DOWHUQDWLYH WKDW ZH DUH DFWLYHO\ H[SORULQJ

XVHV FXUUHQW JHQHUDWLRQ YHULILFDWLRQ WRROV�
:KLOH FXUUHQW YHULILFDWLRQ WRROV RIWHQ KDYH WURXEOH ZLWK

FRPSOH[TXDQWLILHG DVVHUWLRQV WKDW DULVH GXULQJ VWDWLF

IRUPDO YHULILFDWLRQ� WKH VLPSOHU DVVHUWLRQV WKDW DULVH DW

UXQ�WLPH LQ D %,7 ZUDSSHU� ZKHUH DOO YDULDEOHV KDYH

VSHFLILF YDOXHV� DUH PRUH DPHQDEOH WR H[LVWLQJ SURRI

WRROV� ,W LV SRVVLEOH WR DXWRPDWLFDOO\ JHQHUDWH D
FRPSOHWH %,7 ZUDSSHU WKDW UHOLHV RQ D YHULILFDWLRQ�SURRI

HQJLQH IRU DVVHUWLRQ FKHFNLQJ ZLWK VSHFLILF SDUDPHWHU

YDOXHV DW UXQ�WLPH�

x ³$UPRUHG´ &RPSRQHQWV 8VLQJ 5HIHUHQFH

,PSOHPHQWDWLRQV� ,I D UHIHUHQFH LPSOHPHQWDWLRQ IRU D
FRPSRQHQW �HYHQ DQ LQHIILFLHQW RQH� H[LVWV� LW LV SRVVLEOH

WR DXWRPDWLFDOO\ JHQHUDWH D %,7 ZUDSSHU WKDW SHUIRUPV

EDFN�WR�EDFN WHVWLQJ DJDLQVW WKH FRPSRQHQW XQGHU WHVW�

7KLV RSHQV XS LQWULJXLQJ SRVVLELOLWLHV� VLQFH LW LV SRVVLEOH

WR UHFRYHU IURP LQWHUQDO HUURUV� WKH ZUDSSHU� ZKLFK

VWDQGV EHWZHHQ WKH FOLHQW DQG WKH WZR LPSOHPHQWDWLRQV�
FDQ VHOHFWLYHO\ SDVV RQ WKH UHIHUHQFH LPSOHPHQWDWLRQ

UHVXOWV ZKHQ WKH XQLW XQGHU WHVW IDLOV�)XUWKHU� WKH %,7

LQIUDVWUXFWXUH HYHQ DOORZV WKH ³JRRG´ GDWD SURGXFHG E\

WKH UHIHUHQFH LPSOHPHQWDWLRQ WR EH XVHG WR IRUFH

UHFRYHU\ RQ WKH XQLW XQGHU WHVW >�@� 7KLV OHDGV WR D

GHIHQVLYH ZUDSSHU WKDW LV FORVH WR EXOOHWSURRI�

*HQHUDWLQJ 7HVW 'ULYHUV

&RPSDUHG WR WKH GLIILFXOWLHV LQYROYHG LQ JHQHUDWLQJ %,7

ZUDSSHUV� JHQHUDWLQJ WHVW GULYHUV LV D VLPSOHU SUREOHP� 7KH

UHVHDUFK GHVFULEHG KHUH LV EDVHG RQ DQ LQWHUSUHWHU PRGHO IRU

WHVW GULYHUV� D WHVW GULYHU FDQ EH YLHZHG DV D FRPPDQG

7HVW 'ULYHU

&RPSRQHQW
�

)LJXUH �±*HQHUDO 7HVWLQJ 6HWXS

7HVW
6XLWH

7HVW
2XWSXW

'HIHFW
5HSRUW

5HSUHVHQWDWLRQ /D\HU

$EVWUDFW /D\HU

LQWHUSUHWHU WKDW UHDGV LQ WHVW FDVHV DQG WUDQVODWHV WKHP LQWR

DFWLRQV RQ WKH FRPSRQHQW XQGHU WHVW�)URP WKLV SRLQW RI

YLHZ� LW LV VWUDLJKWIRUZDUG WR SDUVH D FRPSRQHQW
V LQWHUIDFH
GHILQLWLRQ� LGHQWLI\ LWV RSHUDWLRQV� DQG FRQVWUXFW DQ

LQWHUSUHWHU� $OO ILOWHULQJ RI LQYDOLG RSHUDWLRQ UHTXHVWV LV

KDQGOHG E\ WKH %,7 ZUDSSHU HQFDVLQJ WKH FRPSRQHQW XQGHU

WHVW� DV LV UXQ�WLPH FKHFNLQJ RI SURGXFHG RXWSXW� 7KH PDMRU

ZHDNQHVVHV RI WKLV DSSURDFK DUH LQ HIIHFWLYHO\ KDQGOLQJ RI

FRPSRQHQWV WKDW UHO\ RQ LQYHUVLRQ RI FRQWURO RU WKDW KDYH D
VXEVWDQWLDO KXPDQ LQWHUDFWLRQ FRPSRQHQW�

:H KDYH GHVLJQHG DQG DUH FXUUHQWO\ LPSOHPHQWLQJ D WHVW

GULYHU JHQHUDWRU EDVHG RQ WKLV VWUDWHJ\� :H DUH FXUUHQWO\

XVLQJ 5(62/9(�&�� DV WKH XQGHUO\LQJ LPSOHPHQWDWLRQ

ODQJXDJH IRU RXU FRPSRQHQWV >��@� DQG VR KDYH DGRSWHG D

VXEVHW RI &�� DV D WHVW FDVH GHILQLWLRQ ODQJXDJH�)LJXUH �
VKRZV D VDPSOH WHVW FDVH RQH PLJKW XVH IRU WKH RQH�ZD\ OLVW

FRPSRQHQW�

7KH DUFKLWHFWXUH IRU WKH LQWHUSUHWHU�WHVW GULYHU XVHV WKH

HQYHORSH DQG OHWWHU SDUDGLJP IRU KDQGOLQJ LQWHUQDO YDOXHV�

DQG XVHV DQ H[HPSODU�EDVHG GLVSDWFKLQJ VWUDWHJ\ IRU

KDQGOLQJ RSHUDWLRQV RQ XVHU�GHILQHG REMHFWV >�@� $V D
UHVXOW� WKH FRUH LQWHUSUHWHU HQJLQH GRHV QRW GLUHFWO\ UHIHU WR

WKH FRPSRQHQW XQGHU WHVW RU DQ\ RI LWV PHWKRGV� 7KLV

PHDQV WKDW VXSSRUW IRU DQ\ XQLW XQGHU WHVW FDQ EH DGGHG

ZLWKRXW UHTXLULQJ DQ\ FKDQJHV WR RU UHFRPSLODWLRQ RI WKH

LQWHUSUHWHU HQJLQH LWVHOI� ,QVWHDG� RXU GULYHU JHQHUDWRU
FUHDWHV D ³JOXH´ VRXUFH ILOH WKDW� ZKHQ FRPSLOHG DQG WKHQ

OLQNHG ZLWK WKH H[LVWLQJ LQWHUSUHWHU REMHFW ILOHV� SURGXFHV D

FXVWRP GULYHU IRU WKH FRPSRQHQW XQGHU WHVW� 2XU

H[SHULHQFH KDV EHHQ WKDW DQ LQWHUSUHWHU SURYLGHV D

VLJQLILFDQW WLPH VDYLQJV RYHU GLUHFW FRPSLODWLRQ RI WHVW

FDVHV ZKHQ ODUJH WHVW VHWV DUH XVHG�

*HQHUDWLQJ 7HVW 'DWD

7KHUH DUH D QXPEHU RI VWUDWHJLHV IRU JHQHUDWLQJ EODFN�ER[

WHVW GDWD IURP D FRPSRQHQW¶V EHKDYLRUDO GHVFULSWLRQ >�@�

7KH JHQHUDWLRQ DSSURDFK ZH KDYH WDNHQ LV DGDSWHG IURP

EODFN�ER[WHVW DGHTXDF\ FULWHULD GHVFULEHG E\ =ZHEHQ HW DO�

>��@� 7KLV EODFN ER[WHVW DGHTXDF\ ZRUN GHVFULEHV KRZ RQH
FDQ FRQVWUXFW D IORZ JUDSK IURP D EHKDYLRUDO VSHFLILFDWLRQ�

7KLV GLUHFWHG JUDSK KDV D VLQJOH HQWU\� UHSUHVHQWLQJ REMHFW

FUHDWLRQ� DQG D VLQJOH H[LW� UHSUHVHQWLQJ REMHFW GHVWUXFWLRQ�

(YHU\ ³REMHFW OLIHWLPH´²FRPSRVHG RI VRPH OHJDO VHTXHQFH

RI RSHUDWLRQV DSSOLHG WR D JLYHQ REMHFW²LV UHSUHVHQWHG DV
VRPH �SRVVLEO\ F\FOLF� SDWK WKURXJK WKH JUDSK�

*LYHQ VXFK D IORZ JUDSK� SRVVLEOH WHVWLQJ VWUDWHJLHV EHFRPH

HYLGHQW >�@� =ZHEHQ HW DO� GHVFULEH QDWXUDO DQDORJXHV RI

ZKLWH�ER[FRQWURO� DQG GDWD�IORZ WHVWLQJ VWUDWHJLHV DGDSWHG

WR EODFN�ER[IORZ JUDSKV� LQFOXGLQJ QRGH FRYHUDJH� EUDQFK

FRYHUDJH� DOO GHILQLWLRQ FRYHUDJH� DOO XVH FRYHUDJH� DOO '8�
SDWK FRYHUDJH� DQG DOO N�OHQJWK SDWK FRYHUDJH�)XUWKHU�

EHFDXVH EUDQFKHV LQ WKH JUDSK UHSUHVHQW GLIIHUHQW FKRLFHV

IRU PHWKRG FDOOV LQ D VHTXHQFH� LQVWHDG RI ORJLFDO FRQWURO�

IORZ GHFLVLRQV� LW LV HDVLHU WR JHQHUDWH WHVW FDVHV WKDW

H[HUFLVH DOO EUDQFKHV�

$V ZLWK RWKHU EODFN�ER[WHVW JHQHUDWLRQ VWUDWHJLHV� WKLV

DSSURDFK IDFHV WZR RSHQ LVVXHV� KRZ WR FRUUHFWO\ DQG

HIILFLHQWO\ GHFLGH ZKLFK HGJHV VKRXOG EH LQFOXGHG LQ D

JUDSK� DQG KRZ WR DGGUHVV WKH SUREOHP RI VDWLVILDELOLW\ LQ

FKRRVLQJ WHVW GDWD YDOXHV WR EH XVHG LQ LQGLYLGXDO WHVW FDVHV�
:KLOH SHUIHFW VROXWLRQV WR WKHVH SUREOHPV DUH QRW

FRPSXWDEOH� SUDFWLFDO KHXULVWLFV WKDW SURYLGH DSSUR[LPDWH

VROXWLRQV DUH DYDLODEOH� :KHQ FRPELQHG ZLWK D %,7

ZUDSSHU VXUURXQGLQJ WKH FRPSRQHQW XQGHU WHVW� LQYDOLG WHVW

FDVHV FDQ EH DXWRPDWLFDOO\ VFUHHQHG DQG UHPRYHG� DOORZLQJ

RYHUO\ RSWLPLVWLF KHXULVWLFV WR EH XVHG LQ SUDFWLFH�)XUWKHU�
WKH LQWHUQDO FKHFNV SHUIRUPHG E\ %,7 ZUDSSHUV KDYH WKH

SRVVLELOLW\ RI UHYHDOLQJ GHIHFWV WKDW DUH QRW GLUHFWO\

REVHUYDEOH IURP WKH RXWSXW SURGXFHG E\ RSHUDWLRQV� 7KLV

SURSHUW\ FDQ OHDG WR DQ DXWRPDWHG WHVWLQJ DSSURDFK WKDW KDV

D JUHDWHU GHIHFW UHYHDOLQJ FDSDELOLW\ WKDQ WUDGLWLRQDO EODFN�
ER[VWUDWHJLHV�

:H KDYH H[SHULPHQWHG ZLWK DXWRPDWLFDOO\ JHQHUDWLQJ WHVW

GDWD E\ FRQVWUXFWLQJ IORZ JUDSKV GLUHFWO\ IURP 5(62/9(

VSHFLILFDWLRQV� :H KDYH LPSOHPHQWHG D SURWRW\SH WRRO IRU

WKLV SXUSRVH� DQG DUH FXUUHQWO\ LQ WKH SURFHVV RI HYDOXDWLQJ

WKH HIIHFWLYHQHVV RI WKH FRUUHVSRQGLQJ WHVW GDWD XVLQJ IDXOW
LQMHFWLRQ WHFKQLTXHV >��@� 6SHFLILFDOO\� ZH KDYH WDNHQ IRXU

5(62/9(�VSHFLILHG FRPSRQHQWV �D VWDFN� TXHXH� RQH�ZD\

OLVW� DQG SDUWLDO PDS�� DQG DSSOLHG DQ H[SUHVVLRQ�VHOHFWLYH

PXWDWLRQ WHVWLQJ VWUDWHJ\ >��@ WR VHHG NQRZQ GHIHFWV LQ

WKHP� 7HVW VHWV IRU HDFK FRPSRQHQW ZHUH WKHQ JHQHUDWHG

XVLQJ WKH DSSURDFK RXWOLQHG KHUH IRU WKUHH FRYHUDJH FULWHULD�
DOO QRGHV� DOO GHILQLWLRQV� DQG DOO XVHV� (DFK PXWDQW ZDV UXQ

RQ WKH FRUUHVSRQGLQJ WHVW VHWV� DQG GDWD ZHUH FROOHFWHG ERWK

ZLWK DQG ZLWKRXW %,7 ZUDSSHUV�

7KH SUHOLPLQDU\ UHVXOWV RI WKLV H[SHULPHQW DUH VXPPDUL]HG

LQ 7DEOH �� ³� 7HVW &DVHV´ LQGLFDWHV WKH QXPEHU RI GLVWLQFW
WHVW FDVHV �VXFK DV WKH H[DPSOH LQ)LJXUH �� LQ HDFK WHVW VHW�

³2XWSXW)DLOXUHV´ LQGLFDWHV WKH QXPEHU RI PXWDQWV NLOOHG E\

WKH FRUUHVSRQGLQJ WHVW VHW EDVHG VROHO\ RQ REVHUYDEOH RXWSXW

�ZLWKRXW FRQVLGHULQJ YLRODWLRQ GHWHFWLRQ ZUDSSHU FKHFNV��

³%,7)DLOXUHV´ LQGLFDWHV WKH QXPEHU RI PXWDQWV NLOOHG

VROHO\ E\ XVLQJ WKH LQYDULDQW DQG SRVWFRQGLWLRQ FKHFNLQJ
SURYLGHG E\ WKH VXEMHFW¶V %,7 ZUDSSHU�)LJXUH � SURYLGHV D

JUDSKLFDO VXPPDU\ RI WKH SHUFHQWDJH RI PXWDQWV NLOOHG

^
/LVW O�
,QWHJHU [�
[������
O�$GGB5LJKW �[��
O�5HPRYHB5LJKW �[��

FRXW �� �RXWSXW ! � �� O
��

 �� [�� HQGO�

`

)LJXUH �²$ 2QH�:D\ /LVW 7HVW &DVH

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

������

6
WD
F
N

4
X
H
X
H

2
Q
H
�:

D
\
/
LV
W

3
D
UW
LD
O
0
D
S

6
WD
F
N

4
X
H
X
H

2
Q
H
�:

D
\
/
LV
W

3
D
UW
LD
O
0
D
S

6
WD
F
N

4
X
H
X
H

2
Q
H
�:

D
\
/
LV
W

3
D
UW
LD
O
0
D
S

DOO GHIV DOO QRGHV DOO XVHV

%,7 :UDSSHU

2XWSXW 2QO\

)LJXUH �²'HIHFW 'HWHFWLRQ 5DWHV

XQGHU HDFK FRQGLWLRQ� WRJHWKHU ZLWK WKH LQFUHDVHG GHWHFWLRQ

UDWH SURYLGHG E\ %,7 ZUDSSHUV�

$V H[SHFWHG� DOO XVHV FRYHUDJH SURYLGHG D KLJKHU GHIHFW�

UHYHDOLQJ FDSDELOLW\ WKDQ WKH RWKHU FULWHULD� 7KH XVH RI WZR�

ZD\ FKHFNLQJ %,7 ZUDSSHUV SURYLGHG DQ LPSURYHPHQW LQ
GHIHFW UHYHDOLQJ FDSDELOLW\ LQ HYHU\ FDVH ZKHUH WKH\ ZHUH

XVHG� UDQJLQJ IURP ��±���� PRUH PXWDQWV NLOOHG� 7KH

JUHDWHVW LPSURYHPHQW ZDV VHHQ LQ WKH ZHDNHVW WHVW VHWV� IRU

H[DPSOH� WKH DOO GHILQLWLRQV WHVW VHW IRU WKH TXHXH

FRPSRQHQW RQO\ UHYHDOHG ����� RI GHIHFWV E\ H[DPLQLQJ

WHVW RXWSXW DORQH� EXW WKLV UDWH LQFUHDVHG WR ����� ZLWK D
%,7 ZUDSSHU�

0RVW VXUSULVLQJ RI DOO� IRU WKUHH RI WKH IRXU FRPSRQHQWV�

���� RI VHHGHG GHIHFWV ZHUH UHYHDOHG E\ XVLQJ %,7

ZUDSSHUV WRJHWKHU ZLWK DOO XVHV FRYHUDJH FULWHULD� 7KH

IRXUWK DQG PRVW VRSKLVWLFDWHG FRPSRQHQW� WKH SDUWLDO PDS�
VKRZHG DQ ����� GHIHFW GHWHFWLRQ UDWH XQGHU WKH VDPH

FLUFXPVWDQFHV� 7KLV UHVXOW DSSHDUV WR EH FDXVHG E\ WZR

VHSDUDWH IDFWRUV�)LUVW� WKH KHDY\ GHJUHH RI DXWRPDWHG

FKHFNLQJ SURYLGHG E\ WKH %,7 ZUDSSHUV VLJQLILFDQWO\

ERRVWHG WKH GHIHFW GHWHFW UDWH RI WKH WHVW VHWV� 6HFRQG� WKH

FRPSRQHQWV WKDW VDZ ���� GHIHFW GHWHFWLRQ UDWHV KDG
VLJQLILFDQWO\ IHZHU FRPSOH[ORJLF FRQGLWLRQV DQG QHVWHG

FRQWURO FRQVWUXFWV LQ WKHLU PHWKRGV� DQG FRGH

LQVWUXPHQWDWLRQ DQDO\VLV UHYHDOHG WKDW IXOO ZKLWH�ER[

VWDWHPHQW�OHYHO FRYHUDJH ZDV EHLQJ DFKLHYHG E\ WKH WHVW

VHWV� 7KLV PD\ EH DW\SLFDO RI PRVW FRPSRQHQWV� VR WKH

���� IDXOW GHWHFWLRQ UHVXOWV IRU ³DOO XVHV´ VKRXOG QRW EH
XQGXO\ JHQHUDOL]HG� 2Q WKH RWKHU KDQG� GHVLJQ JXLGHOLQHV

IRU REMHFW�RULHQWHG VRIWZDUH DUJXH IRU VPDOO� VLPSOH

PHWKRGV� HYHQ LQ FRPSOLFDWHG REMHFWV� VR LW LV FRQFHLYDEOH

WKDW WKH FRPSRQHQWV XVHG LQ WKLV VWXG\ DUH PRUH

UHSUHVHQWDWLYH RI FXUUHQW FRGLQJ SUDFWLFHV WKDQ WKH GHHSO\
QHVWHG ORJLF RI SURFHGXUDO�VW\OH SURJUDPPLQJ�

7KH SUHOLPLQDU\ UHVXOWV SURYLGHG E\ WKLV H[SHULPHQW�

WRJHWKHU ZLWK RXU H[SHULHQFHV ZLWK WKH JHQHUDWRU� LQGLFDWH

WKDW WKHUH LV WKH SRWHQWLDO IRU SUDFWLFDO DXWRPDWLRQ RI WKLV

WHVWLQJ VWUDWHJ\�

� 5(/$7(':25.
7KH %,7 ZUDSSHUV KHUH DUH EXLOW RQ D SKLORVRSK\ SHUKDSV

EHVW SKUDVHG E\ %HUWUDQG 0H\HU DV GHVLJQ�E\�FRQWUDFW >�@�

SUHFRQGLWLRQV RI RSHUDWLRQV DUH WKH UHVSRQVLELOLW\ RI FDOOHUV

ZKLOH SRVWFRQGLWLRQV DUH WKH REOLJDWLRQV RI LPSOHPHQWHUV�

DQG LPSOHPHQWHUV PD\ WKXV DVVXPH WKDW WKH SUHFRQGLWLRQV

KROG DW WKH WLPH RI LQYRFDWLRQ� 2WKHUV KDYH SURSRVHG
GLIIHUHQW DOORFDWLRQV RI UHVSRQVLELOLWLHV >�� ��@� 2QH NH\

GLIIHUHQFH LQ WKH DSSURDFK DGYRFDWHG KHUH LV WKDW

UHVSRQVLELOLW\ IRU FKHFNLQJ ZKHWKHU RU QRW REOLJDWLRQV DUH

PHW VKRXOG EH VHSDUDWHG IURP ERWK FOLHQW DQG LPSOHPHQWHU�

$GHTXDF\

&ULWHULRQ
6XEMHFW

� 7HVW

&DVHV

2XWSXW

)DLOXUHV
�

%,7

)DLOXUHV
�

6WDFN � � ����� �� �����

4XHXH � � ����� �� �����

2QH�:D\ /LVW �� �� ����� �� �����

3DUWLDO 0DS � �� ����� ��� �����

$OO 'HILQLWLRQV

7RWDO �� ��� ����� ��� �����

6WDFN �� ��� ����� �� �����

4XHXH � �� ����� �� �����

2QH�:D\ /LVW �� �� ����� �� �����

3DUWLDO 0DS � ��� ����� ��� �����

$OO�1RGHV�

7RWDO �� ��� ����� ��� �����

6WDFN �� �� ����� �� ������

4XHXH �� �� ����� �� ������

2QH�:D\ /LVW ��� ��� ����� ��� ������

3DUWLDO 0DS �� ��� ����� ��� �����

$OO 8VHV

7RWDO ��� ��� ����� ��� �����

7DEOH �²([SUHVVLRQ�6HOHFWLYH 0XWDWLRQ 6FRUHV RI 7HVW 6HWV

,Q DGGLWLRQ WR GHFRXSOLQJ FKHFNLQJ FRGH IURP ERWK WKH

FOLHQW DQG WKH FRPSRQHQW� WKLV DOVR RSHQV XS WKH

RSSRUWXQLW\ RI SHUIRUPLQJ FKHFNV LQ FOLHQW�OHYHO� DEVWUDFW
WHUPV LQVWHDG RI LQ FRPSRQHQW�OHYHO LPSOHPHQWDWLRQ

GHWDLOV� 7KLV UHVXOWV LQ KLJKO\ UHXVDEOH ZUDSSHUV WKDW HDVLO\

FDQ EH DGGHG WR RU UHPRYHG IURP D V\VWHP�

0DQ\ RWKHUV KDYH DOVR GLVFXVVHG WKH LGHD RI UXQ�WLPH

DVVHUWLRQ FKHFNLQJ� 7KH $QQRWDWLRQ 3UH�3URFHVVRU

GHVFULEHG E\ 5RVHQEOXP >��@ LV D JRRG H[DPSOH� +RZHYHU�
VXFK DSSURDFKHV W\SLFDOO\ GR QRW GLVWLQJXLVK EHWZHHQ WKH

DEVWUDFW YLHZ RI FRPSRQHQW VWDWH SHUFHLYHG E\ FOLHQWV DQG

WKH FRQFUHWH� LPSOHPHQWDWLRQ GHWDLOV VHHQ E\ LPSOHPHQWHUV�

,Q DGGLWLRQ� VXFK DSSURDFKHV DUH UDUHO\ LQWHJUDWHG LQWR DQ

RYHUDOO VWUDWHJ\ IRU DXWRPDWHG WHVWLQJ� (LIIHO SURYLGHV

DQRWKHU ZHOO�NQRZQ DSSURDFK IRU SUH� DQG SRVWFRQGLWLRQ
FKHFNLQJ DW UXQWLPH >�@� $ PRUH FRPSOHWH GLVFXVVLRQ RI

GLIIHUHQFHV EHWZHHQ %,7 ZUDSSHUV DQG (LIIHO DVVHUWLRQ

FKHFNLQJ LV SURYLGHG LQ >�@� EXW WKH (LIIHO DSSURDFK LV QRW

FRPELQHG ZLWK D V\VWHPDWLF DSSURDFK WR SURGXFLQJ WHVW

GULYHUV RU WHVW GDWD�

2WKHU SXEOLVKHG DSSURDFKHV WR VSHFLILFDWLRQ�EDVHG WHVWLQJ
RI REMHFW�EDVHG DQG SURFHGXUDO VRIWZDUH FRPSRQHQWV >�� ��

�� �� ��@ KDYH LQIOXHQFHG WKLV ZRUN� 7KH UHVHDUFK GHVFULEHG

KHUH GLIIHUV� KRZHYHU� LQ WKH ZD\ LW LQFRUSRUDWHV UXQ�WLPH

LQWHUIDFH YLRODWLRQ FKHFNLQJ� D VWUDWHJ\ IRU JHQHUDWLQJ WHVW

GDWD� D GHVLJQ IRU XQLW DQG LQWHJUDWLRQ WHVW GULYHUV� DQG WKH
ZD\ LW VHSDUDWHV WHVWLQJ LQIUDVWUXFWXUH FRGH FRPSOHWHO\ IURP

DOO XQLWV XQGHU WHVW LQ D V\VWHP�

� &21&/86,216 $1')8785(:25.

7KLV SDSHU EULHIO\ VNHWFKHV D JHQHUDO VWUDWHJ\ IRU DXWRPDWHG

EODFN�ER[WHVWLQJ RI VRIWZDUH FRPSRQHQWV� 7KH VWUDWHJ\ LV

EDVHG RQ FRPELQLQJ WKUHH WHFKQLTXHV� DXWRPDWLF JHQHUDWLRQ
RI FRPSRQHQW WHVW GULYHUV� DXWRPDWLF JHQHUDWLRQ RI WHVW GDWD�

DQG DXWRPDWLF RU VHPL�DXWRPDWLF JHQHUDWLRQ RI ZUDSSHUV

VHUYLQJ WKH UROH RI WHVW RUDFOHV� 7KLV UHVHDUFK LQ SURJUHVV

XQLILHV VHYHUDO WKUHDGV RI WHVWLQJ UHVHDUFK LQWR D FRKHUHQW

ZKROH� 6HYHUDO GLIILFXOW UHVHDUFK TXHVWLRQV UHPDLQ RSHQ�

EXW ZRUN WR GDWH LQGLFDWHV WKDW SUDFWLFDO OHYHOV RI WHVWLQJ
DXWRPDWLRQ DUH SRVVLEOH�

7KH SULPDU\ RSHQ UHVHDUFK LVVXHV IRU IXWXUH ZRUN LQFOXGH�

x (YDOXDWLQJ WKH HIIHFWLYHQHVV RI WHVW GDWD SURGXFHG XVLQJ

RXU FXUUHQW SURWRW\SH WRRO�

x ([SORULQJ WKH OLPLWV RI VHPL�DXWRPDWLF JHQHUDWLRQ RI
SRVWFRQGLWLRQ FKHFNLQJ FRGH LQ %,7 ZUDSSHUV�

x $VVHVVLQJ WKH IHDVLELOLW\ RI G\QDPLF YHULILFDWLRQ RI

SRVWFRQGLWLRQV DV DQ DOWHUQDWLYH LPSOHPHQWDWLRQ VWUDWHJ\

IRU %,7 ZUDSSHUV�

x ([SORULQJ DOWHUQDWLYH KHXULVWLFV IRU JHQHUDWLQJ IORZ

JUDSKV IURP VSHFLILFDWLRQV�

x ([SORULQJ DOWHUQDWLYH KHXULVWLFV IRU VHOHFWLQJ VSHFLILF

GDWD YDOXHV WR EH XVHG LQ JHQHUDWHG WHVW FDVHV�

x &RPSOHWLQJ DQG HYDOXDWLQJ WKH WHVW GULYHU JHQHUDWRU�

$&.12:/('*(0(176

7KH LGHDV DQG IHHGEDFN SURYLGHG E\ PHPEHUV RI WKH
5HXVDEOH 6RIWZDUH 5HVHDUFK *URXS DW 7KH 2KLR 6WDWH

8QLYHUVLW\ DQG DW :HVW 9LUJLQLD 8QLYHUVLW\ KDYH KHOSHG

VKDSH DQG GLUHFW WKLV UHVHDUFK� ,Q DGGLWLRQ� VHYHUDO

JUDGXDWHV VWXGHQWV KDYH FRQWULEXWHG WR WKH H[SORUDWRU\ ZRUN

GHVFULEHG KHUH� 9LQD\ $QQRMMXOD� 6KDUPLQ %DQX� 1LNKLO

%REGH� 'X[LQJ &DL� 'LGHP 'XUPD]� 5DMDW *XSWD� %RE
+DOO� 0DQGDU -RVKL� +XQWHU 1XWWDO� .HQW 6ZDUW]� 0DQRM

7KRSFKHUQHQL� DQG :HL :DQJ� 7KHLU FRQWULEXWLRQ LV

JUDWHIXOO\ DFNQRZOHGJHG�

5()(5(1&(6

�� %HL]HU� %� %ODFN�%R[7HVWLQJ� 7HFKQLTXHV IRU

)XQFWLRQDO 7HVWLQJ RI 6RIWZDUH DQG 6\VWHPV� :LOH\�
1HZ <RUN� �����

�� %HQQHWW� %�� DQG 6LWDUDPDQ� 0� 9DOLGDWLRQ RI UHVXOWV LQ

WHVWLQJ DEVWUDFW GDWD W\SHV� $ PHWKRG IRU DXWRPDWLRQ�

,Q 3URF� �VW ,QW
O &RQI� 6RIWZDUH 4XDOLW\ �'D\WRQ�

2KLR� 2FW� ������

�� &RSOLHQ� -�2� $GYDQFHG &�� 3URJUDPPLQJ 6W\OHV DQG

,GLRPV� $GGLVRQ�:HVOH\� �����

�� (GZDUGV� 6�� 6KDNLU� *�� 6LWDUDPDQ� 0�� :HLGH� %�:��

DQG +ROOLQJVZRUWK� -� $ IUDPHZRUN IRU GHWHFWLQJ

LQWHUIDFH YLRODWLRQV LQ FRPSRQHQW�EDVHG VRIWZDUH� ,Q

3URF� �WK ,QW
O &RQI� 6RIWZDUH 5HXVH �9LFWRULD� &DQDGD�
-XQH ����� ,(((&6 3UHVV� ������

��)UDQNO� 3�� DQG 'RRQJ� 5� 7KH $67227 DSSURDFK WR

WHVWLQJ REMHFW�RULHQWHG SURJUDPV� $&0 7UDQV�

6RIWZDUH (QJ� 0HWKRGRORJ\ �� � ������� ��������

�� *DQQRQ� -�'�� 0F0XOOLQ� 3�5�� DQG +DPOHW� 5� 'DWD�

DEVWUDFWLRQ LPSOHPHQWDWLRQ� VSHFLILFDWLRQ� DQG WHVWLQJ�
$&0 7UDQV� 3URJUDPPLQJ /DQJXDJHV DQG 6\VWHPV ��

� �-XO\ ������ ��������

�� +RIIPDQ� '�� DQG 6WURRSHU� 3� 7KH WHVW�JUDSKV

PHWKRORGRJ\²$XWRPDWHG WHVWLQJ RI FODVVHV� -�

2EMHFW�2ULHQWHG 3URJUDPPLQJ �1RY��'HF� ������ ���

���

�� /LVNRY� %�� DQG *XWWDJ� -� $EVWUDFWLRQ DQG

6SHFLILFDWLRQ LQ 3URJUDP 'HYHORSPHQW� 0F*UDZ�+LOO�

1HZ <RUN� �����

�� 0H\HU� %� 2EMHFW�2ULHQWHG 6RIWZDUH &RQVWUXFWLRQ�

�QG (G�� 3UHQWLFH +DOO 375� 8SSHU 6DGGOH 5LYHU� 1HZ
-HUVH\� �����

��� 2IIXWW� -�� /HH� $�� 5RWKHUPHO� *�� 8QWFK� 5�+�� DQG

=DSI� &� $Q H[SHULPHQWDO GHWHUPLQDWLRQ RI VXIILFLHQW

PXWDQW RSHUDWRUV� $&0 7UDQV� 6RIWZDUH (QJ�

0HWKRGRORJ\ �� � �$SU� ������ �������

��� 3DUULVK� $�� DQG &RUGHV� '� $SSO\LQJ FRQYHQWLRQDO
XQLW WHVWLQJ WHFKQLTXHV WR DEVWUDFW GDWD W\SH RSHUDWLRQV�

,QW
O -� 6RIWZDUH (QJ� DQG .QRZOHGJH (QJ� �� � �0DU�

������ ��������

��� 3HUU\� '�(� 7KH LQVFDSH HQYLURQPHQW� ,Q 3URF� ��WK
,QWO� &RQI� 2Q 6RIWZDUH (QJ� �0D\ ������ ,(((&6

3UHVV� SS� �����

��� 5RVHQEOXP� '�6� $ SUDFWLFDO DSSURDFK WR

SURJUDPPLQJ ZLWK DVVHUWLRQV� ,(((7UDQV� 6RIWZDUH

(QJ� ��� � �-DQ� ������ ������

��� 6KDNLU� *� $ 6\VWHPDWLF *HQHUDWRU IRU 'HWHFWLQJ
,QWHUIDFH 9LRODWLRQV LQ &RPSRQHQW�%DVHG 6RIWZDUH�

0�6� 5HSRUW� 'HSW� RI &RPSXWHU 6FLHQFH DQG (OHF�

(QJLQHHULQJ� :HVW 9LUJLQLD 8QLY�� 0RUJDQWRZQ� :9�

�����

��� 6LWDUDPDQ� 0�� :HOFK� /�5�� DQG +DUPV� '�(� 2Q

VSHFLILFDWLRQ RI UHXVDEOH VRIWZDUH FRPSRQHQWV� ,QW¶O -�
6RIWZDUH (QJ� DQG .QRZOHGJH (QJ� �� 1R� � �������

��������

��� 6LWDUDPDQ� 0�� DQG :HLGH� %�:�� HGV� &RPSRQHQW�

EDVHG VRIWZDUH HQJLQHHULQJ XVLQJ 5(62/9(� $&0

6,*62)7 6RIWZDUH (QJ� 1RWHV ��� � ������� ������

��� :LQJ� -� 0� $ VSHFLILHU
V LQWURGXFWLRQ WR IRUPDO
PHWKRGV� ,(((&RPSXWHU ��� � �6HSW� ������ �����

��� =KX� +�� +DOO� 3�$�9�� DQG 0D\� -�+�5� 6RIWZDUH XQLW

WHVW FRYHUDJH DQG DGHTXDF\� $&0 &RPSXWLQJ 6XUYH\V

��� � �'HF� ������ ��������

��� =ZHEHQ� 6�� +H\P� :�� DQG .LPPLFK� -� 6\VWHPDWLF
WHVWLQJ RI GDWD DEVWUDFWLRQV EDVHG RQ VRIWZDUH

VSHFLILFDWLRQV� -� 6RIWZDUH 7HVWLQJ� 9HULILFDWLRQ DQG

5HOLDELOLW\ �� � ������� ������

Toward the Determination of Sufficient Mutant Operators for C

Ellen Francine Barbosa
José Carlos Maldonado

Auri Marcelo Rizzo Vincenzi

Depto. de Ciências de Computação e Estatística
ICMC/USP – Universidade de São Paulo

Av. Dr Carlos Botelho, 1465
 Cx. Postal 668,

13560-970 São Carlos, SP, Brazil
{francine, jcmaldon, auri}@icmc.sc.usp.br

ABSTRACT

Mutation Testing – one of the fault-based criteria – has
been found to be effective on revealing faults.
However, its high cost of application, due to the high
number of mutants created, has motivated the
proposition of alternative approaches for its
application. One of them, named Selective Mutation,
aims to reduce the number of generated mutants
through a reduction on the number of mutant operators.
A previous relevant study resulted on the proposition of
a sufficient mutant operators set for FORTRAN,
indicating that it is possible to have a large cost
reduction of Mutation Testing, preserving a high
Mutation Testing score. In the same research line, this
work investigates procedures for the determination of a
sufficient mutant operators set for C programs in the
perspective of contributing to the establishment of low-
cost, effective mutation based testing strategies.

Keywords

Software Testing, Mutation Testing, Sufficient Mutant
Operators

1 INTRODUCTION

Software testing, which has as objective the
identification of not-yet-discovered errors, is one of the
most important activities to guarantee the quality and
the reliability of the software under development. The
success of the testing and validation activities depends
on the quality of a test set.

Since the exhaustive test is, in general,
impracticable, criteria that allow selecting a subset of
the input domain preserving the probability of
revealing the existent errors in the program are
necessary. These criteria systematize the testing
activity and may also constitute a coverage measure[9].

There are a large number of criteria available to
evaluate a test set for a given program against a given
specification. A tester may use one or more of these
criteria to assess the adequacy of a test set for a
program and, if it is the case, enhance the test set by

constructing additional test cases needed to satisfy the
selected criteria.

Considering the diversity of testing criteria as well
their complementary aspects, some theoretical and
empirical studies have been conducted, aiming at
establishing an effective, low-cost testing strategy
[5][14][12][20][21][15][22][3][17]. Effectiveness, cost,
and strength are the three most meaningful bases
against which test adequacy criteria can be compared.
Effectiveness is related to the fault detection capability
of a criterion; cost indicates the effort to satisfy a
criterion; and strength refers to the difficulty of
satisfying a given criterion C2 for a test set T that
already satisfies another criterion C1.

Mutation Testing, originally proposed by DeMillo
et al. [9], although powerful, is computationally
expensive [20][21][15]. Its high cost of application,
mainly due to the high number of mutants created, has
motivated the proposition of alternative criteria for its
application [1][11][14][15]. One of these alternatives
tries to reduce the cost of Mutation Testing application
by determining a sufficient mutant operators set [15].

This work investigates approaches for the
determination of a sufficient mutant operators set for C,
aiming at contributing to the establishment of low-cost,
effective mutation based testing strategies. We
designed a procedure for the determination of a
sufficient mutant operators set for C language, named
8ZKKNHNJSY Procedure [3][4], based on guidelines we
have established inspired in previous work.

We carried out two experiments: Experiment I,
using a set of 27 programs, part of a text editor; and
Experiment II, using 5-Unix utility programs. These
experiments have been conducted using Proteum [6],
an acronym for PROgram TEsting Using Mutants, a
tool that supports the testing of C programs at the unit
level.

The remainder of this paper is organized as follows.
In Section 2, an overview of mutation testing is
provided as well as the related work is described. In
Section 3 we discuss the guidelines we thought about to
establish the 8ZKKNHNJSY Procedure. Sections 4 and 5
contain the description and analysis of the experiments
we carried out. In Section 6 we compare the results of

Experiment I and Experiment II. In Section 7, our
conclusions and further work are presented.

2 MUTATION TESTING: AN OVERVIEW

Mutation Testing is a fault-based testing criterion [9].
This criterion is based on the assumption that a
program will be well tested if all so-called “simple
faults” are detected and removed.

Simple faults are introduced into the program by
creating different versions of the program, known as
mutants, each of which containing a simple syntactic
change. The simple faults are modeled by a set of
mutant operators applied to a program P under testing.

The quality of test set T is measured by its ability to
distinguish the behavior of the mutants from the
behavior of the original program. So, the goal is to find
a test case that causes a mutant to generate a different
output from that of the original program. A mutant is
considered equivalent if no such test case exists. If P
behaves as per the specification when T is applied, then
the quality of T is demonstrated; otherwise, a fault has
been detected and the debugging activity would take
place.

A test set that kills all non-equivalent mutants is
said to be adequate relative to Mutation Testing,
denoted by MT-adequate. The mutation score is the
ratio of the number of dead mutants to the number of
non-equivalent mutants; it measures the adequacy of
test set. It should be observed that it is expected that
complex faults be coupled to simple faults in such a
way that a test set that detects all simple faults in a
program will detect most complex faults. This is the so-
called coupling effect assumption [9].

2.1 Alternative Mutation Testing Criteria

Some empirical studies have provided evidences that
Mutation Testing is among the most promising criteria
in terms of fault detection [20][21][15][22]. However,
as highlighted before, Mutation Testing often imposes
unacceptable demands on computing and human
resources because of the large number of mutants that
need to be compiled and executed on one or more test
cases. In addition, a tester needs to examine many
mutants and analyze them for possible equivalence
with the program under testing. For these reasons,
Mutation Testing is generally regarded as too
expensive to use.

The test community, to deal with the cost aspects,
has investigated some approaches derived from
Mutation Testing: Randomly Selected Mutation [1],
Constrained Mutation [11] and Selective Mutation
[14][15]. In fact, the goal is to determine a set of
mutations in such a way that if we obtain a test set T,
which is able to distinguish those mutations, T will also
be MT-adequate. In other words, the idea is that several
mutants can lead to the same test case selection, so that
we can use subsets of operators or mutants that lead to
select test sets as effective as the total set of operators
and mutants would [3][8].

Randomly Selected Mutation, proposed by
Acree et al. [1], considers a percentage of the mutants
generated by each operator (x%). Empirical studies
conducted for FORTRAN and C programs [5][21]
indicated that it is possible to obtain high mutation
scores even with a reduced number of mutants.
However, the randomly selection of mutants ignores
the fault detection capability of individual mutant types
[22]. Budd’s fault detection experiments [5] found that
mutants generated with respect to one mutant operator
may be more effective in detecting certain types of
faults than mutants generated with respect to another
operator. This suggests that while mutants are selected
for examination, they should be weighted differently
depending on their respective fault detection capability.

Mathur proposed a variant of Acree et al.’s idea:
Constrained Mutation [11]. In Constrained Mutation we
select a subset of mutant operators to be used in mutant
generation. Satisfactory results have been obtained
[20][21]. It is important to observe, however, that
Constrained Mutation does not establish a method for
selecting the operators to be used; in general, these
operators are intuitively selected based on the
authors’ experience. The definition of systematic ways
for selecting the operators may lead us to better results.

Offutt et al. introduced Selective Mutation [14]. In
this approach, the method for selecting the operators is
related to the quantity of mutants that each operator
generates: the operators that create the most mutants
are not applied. So, the N-Selective Mutation omits the
N most prevalent operators. In another study, in the
same research line, Offutt et al. [15] introduced the
concept of sufficient mutant operators. The idea is to
determine a set of sufficient mutant operators S in a
such way that obtained a test set T S-adequate T would
lead to a very high mutation score. Next, two relevant
studies related to the determination of sufficient mutant
operators are described. In the remainder of this paper
we refer to these approaches as Selective Mutation.

2.2 Related Work

Offutt et al. conducted an experiment for the
determination of sufficient mutant operators for
FORTRAN language [15], using the Mothra tool [10].
The 22 mutant operators implemented in this tool are
divided into three mutation classes: replacement of
operands, expression modification and statement
modification. Offutt et al. compared the mutation
classes pairwise and noticed that with the five
operators of expression modification class it was
possible to obtain a significant reduction in the number
of mutants generated (77.56%), preserving a high
mutation score with respect to Mutation Testing (above
0.980). One important point to be observed is that all
the sufficient mutant operators determined were not
among the most six prevalent FORTRAN operators,
meaning that this approach would improve the
6-Selective criterion.

In another experiment, conducted by Wong et al.
[22], the Selective Mutation was investigated in the
context of C and FORTRAN. For C language, it was

used Proteum [6], a testing tool that allows measuring
the adequacy of the test sets with respect to (w.r.t.) 71
mutant operators, categorized in four mutation classes
[2]: statement (15), operator (46), variable (7) and
constant (3). Six selective mutation categories were
constructed, based on 11 of the 71 mutant operators.
These mutant operators were selected based on the
authors’ judgement of their relative usefulness.
According to the authors, 6 of the 11 operators may
constitute a very good starting point for establishing a
sufficient set of mutant operators to use in an alternate
cost-effective mutation. Some of the Proteum mutant
operators are illustrated in Table 1.

Table 1. Sample of Proteum Mutant Operators [2]

Mutant Operator Description
SMTC n-trip continue
SSDL statement deletion
STRP trap on statement execution
SWDD while replacement by do-while
OASN arithmetic operator by shift operator
OEBA plain assignment by bitwise assignment
OLBN logical operator by bitwise operator
OLLN logical operator mutation
OLNG logical negation
ORRN relational operator mutation
VTWD twiddle mutations
VDTR domain traps
Cccr constant for constant replacement
Ccsr constant for scalar replacement

CRCR required constant replacement

We reproduced the experiments conducted by Offutt
et al. and Wong et al. for two other sets of programs: a
suite of 27-C programs which composed a simplified
text editor, previously used by Weyuker [18]; and 5-
Unix utility programs previously used by Wong et al.
[23]. Applying the strategy of Offutt et al. on the 27-
program suite we obtained the constant mutation class
as the sufficient set, with a mutation score of 0.97143
and a cost reduction of 78.115%, in terms of the
number of generated mutants. For the
5-program suite we obtained the operator mutation
class as the sufficient set, with a mutation score of
0.99042 and a cost reduction of 66.269%. Applying the
operators investigated by Wong et al. [22] we obtained
a mutation score of 0.97979 and a cost reduction of
79.738% for the 27-program suite and a mutation score
of 0.99195 with a cost reduction of 83.435% for the
5-program suite [3].

The results obtained with the intuitively set of
operators proposed by Wong et al. were little better
than the results obtained with the sufficient set
obtained with the application of Offutt et al.’s strategy
in the context of C language for the two suites of
programs. It should be highlighted that the sufficient
operators determined by Offutt et al.’s approach for the
27-program suite were among the most prevalent ones
for C-language, conflicting with N-Selective mutation.
Moreover, the sufficient operators were completely
different for each program suite. Motivated by these
results and based on Offutt et al.’s idea, we defined the
8ZKKNHNJSY Procedure [3][4], a systematic way to
select a set of sufficient mutant operators, based on the
guidelines discussed in the next section.

3 GUIDELINES FOR DETERMINATION OF A
SUFFICIENT MUTANT OPERATORS SET

Consider MC1, MC2, ..., MCn sets that represent mutant
operators classes. Mutation Testing (MT) uses, in its
original conception, the set of all mutant operators
defined by OP = MC1 ∪ MC2 ∪ ... ∪ MCn. Any subset
of the mutant operators SC ∈ 2{ OP} establishes a
selective criterion.

Given a selective criterion SC, a test set T is said to
be SC-adequate if T obtains a mutation score of 1.000
w.r.t. the mutants generated by the SC mutant
operators, i.e., if T is able to reveal the behavioral
differences among P (program under test) and the non-
equivalent mutants created by the SC operators. From
now on, if SC is composed by only one operator op
(SC = {op}), it will be used simply op.

A meaningful mechanism used to compare the
testing criteria is the Inclusion Relation, defined by
Rapps and Weyuker [16]. Let C1 and C2 be testing
criteria. C1 includes C2 (C1 ⇒ C2) if for every test set
T1 C1-adequate, T1 is also C2-adequate and there is
some T2 C2-adequate that is not C1-adequate; C1 and C2

are equivalent if for any T C1-adequate, T is
C2-adequate and vice-versa. Based on this, other
relations have been defined: ProbBetter [19], related to
the effectiveness of the criteria; and ProbSubsume [12],
related to the strength. For instance, a testing criterion
C1 ProbSubsumes C2 for a program P if a test set T that
is adequate with respect to C1 is “likely” to be adequate
with respect to C2. If C1 ProbSubsumes C2, C1 is said to
be at least as more difficult to satisfy than C2.

The underlying concepts of these relations leaded us
to define the empirically adequacy concept and the
EmpSubsumes Relation. In practice, for time and cost
constraints, obtaining a mutation score near to 1.000
may be satisfactory. Offutt et al. argument that the
software testing literature offers no clear evidence that
100% coverage provides better testing than coverage at
a lower level [15]. Let ms* be a mutation score defined
by the tester. For a criterion C and a test set T, T is said
to be empirically adequate to C (denoted by T is
C-adequate*) if T obtains a mutation score equal or
greater than ms* w.r.t. C [3]. We assume that C1

EmpSubsumes C2 with a mutation score ms* (denoted

by C1

*ms
⇒ C2) if for every test set T1 C1-adequate, T1 is

also C2-adequate* and there is some T2 C2-adequate
that is not C1-adequate*. C1 and C2 are empirically
equivalent (denoted by equivalent*) if for any T
C1-adequate, T is also C2-adequate* and vice-versa.

The determination of a sufficient mutant operators
set consists in selecting a subset SS ∈ 2{ OP} , where OP
is the total set of mutant operators defined for a target
language, such that if a test set T is SS-adequate, T will
also be OP-adequate*. In other words, if T obtains a
mutation score of 1.000 w.r.t. SS, T will have a
mutation score equal or greater than ms* w.r.t. OP
(Mutation Testing). It is important to observe that,
given a mutation score ms*, there is not only one
sufficient mutant operator set.

Given the testing criteria C1 and C2, C1 determines a
high mutation score w.r.t. C2 if every test set T
C1-adequate has a high mutation score w.r.t. C2, i.e., if
T is able to distinguish the most mutants generated by
the mutant operators of C2.

Since SS should determine a high mutation score
w.r.t. OP, we establish some guidelines to be
considered in selecting the mutant operators that will
compose SS [3]. These guidelines lead to consider
information on subsumption of some mutant operators
by others, as motivated by Offutt et al. [15].

 i. Consider mutant operators that determine a high
mutation score
To guarantee that the sufficient mutant operators set
determines a high mutation score w.r.t. Mutation Testing,
we should select the operators that determine the greatest
mutation scores w.r.t. the total set of mutant operators
(OP). In same aspect, this capture the mutant operator
effectiveness in the sense used by Offutt et al. [15], i.e.,
its mutation score against the full set of operators.

 ii. Consider one operator of each mutation class
Each mutation class models specific errors in certain
elements of a program (e.g. statements, operators,
variables and constants). So, it is desirable that the
sufficient set has, at least, the most representative operator
of each class.

 iii. Evaluate the empirical inclusion among the mutant
operators
The mutant operators that are empirically included by
other mutant operators of the sufficient set should be
removed since these operators increase the application
cost of the sufficient set, in terms of number of mutants
and equivalence determination, and do not effectively
contribute to the improvement of the testing activity.

 iv. Establish an incremental strategy
Given the application cost and the test requirements that
each mutation class determines, it is interesting to
establish an incremental strategy of application among the
mutant operators of the sufficient set. The idea is to apply,
at first, the mutant operators that are relevant to certain
minimal requirements of testing (e.g., all-nodes and all-
edges coverage). Next, depending on the criticality of the
application and the budget and time constraints, the
mutant operators related to other concepts and test
requirements may be applied.

 v. Consider mutant operators that provide an increment
in the mutation score
In general, independently of the quality of the test set,
80% of the mutants are killed at the first execution [5].
Considering that just around 20% of the mutants
effectively contribute to the quality improvement of the
test set, an increment of 1% in the mutation score
represents 5% of the mutants that are really significant.
Thus, the non-selected operators that if included in the
sufficient set would increase the mutation score should be
analyzed.

 vi. Consider mutant operators with high strength
Other operators that should be considered to determine the
sufficient set are those that have a high average strength
w.r.t. each operator of the total set of operators.

The proposed 8ZKKNHNJSY Procedure [3][4] has been
refined through the conduction of two experiments,
discussed in the next sections. It has six steps, related
to the guidelines discussed above:

Step 1: Select mutant operators that determine a high
mutation score w.r.t. OP.

Step 2: Select one operator of each mutation class.

Step 3: Reduce the preliminary sufficient set (SSprel).

Step 4: Establish an incremental strategy.

Step 5: Select mutant operators that provide an increment
in the mutation score.

Step 6: Select mutant operators with high strength w.r.t.
OP.

 4 EXPERIMENT I

The methodology used to conduct this experiment
comprises five phases: Program Selection, Tool
Selection, Test Set Generation, 8ZKKNHNJSY Procedure
Application and Data Analysis.

4.1 Program Selection

A suite of 27 small programs, part of a simplified text
editor, was selected. These programs, originally written
in Pascal, were converted to C; Weyuker [18] has also
used them. As illustrated in Table 2, these programs
range in size from 11 up to 71 executable statements
and have 119 up to 1631 mutants. In Table 2 it is also
provided information on the number of mutants per
mutation class as well as on the number of equivalent
mutants.

Table 2. Program Suite I:
Number of LOC and Mutants

Program LOC
Mutants

Total / Equiv
Statement

Total / Equiv
Operator

Total / Equiv
Variable

Total / Equiv
Constant

Total / Equiv
append 13 387 / 64 54 / 5 183 / 34 80 / 19 70 / 6
archive 14 514 / 75 57 / 0 222 / 19 61 / 28 174 / 28
change 13 119 / 19 59 / 5 15 / 8 33 / 3 12 / 3
ckglob 23 730 / 234 76 / 15 340 / 99 172 / 78 142 / 42

cmp 13 430 / 41 78 / 1 129 / 6 119 / 34 104 / 0
command 71 1207 / 243 230 / 26 248 / 89 345 / 86 384 / 42
compare 18 482 / 43 74 / 2 157 / 21 153 / 16 98 / 4
compress 14 454 / 87 69 / 0 215 / 53 110 / 34 60 / 0
dodash 15 1071 / 202 62 / 1 423 / 71 341 / 91 245 / 39

edit 23 524 / 139 105 / 13 211 / 63 126 / 45 82 / 18
entab 18 370 / 39 89 / 2 144 / 20 79 / 17 58 / 0

expand 15 389 / 37 67 / 0 210 / 20 60 / 17 52 / 0
getcmd 32 860 / 19 574 / 1 44 / 14 10 / 4 232 / 0
getdef 31 840 / 134 136 / 7 308 / 54 208 / 47 188 / 26
getfn 11 494 / 88 50 / 0 245 / 48 90 / 26 109 / 14
getfns 23 627 / 135 64 / 5 233 / 54 162 / 44 168 / 32
getlist 21 678 / 93 86 / 4 310 / 56 150 / 30 132 / 3
getnum 17 564 / 73 71 / 2 252 / 19 107 / 31 134 / 21
getone 23 834 / 122 98 / 4 397 / 67 205 / 38 134 / 13
gtext 16 804 / 82 55 / 3 331 / 37 224 / 39 194 / 3

makepat 29 1683 / 266 151 / 4 516 / 98 594 / 108 422 / 56
omatch 36 840 / 220 146 / 18 313 / 100 196 / 57 185 / 45
optpat 13 444 / 138 68 / 7 218 / 75 70 / 23 88 / 33
spread 19 1061 / 79 86 / 0 418 / 40 355 / 35 202 / 4
subst 36 1631 / 300 154 / 9 497 / 105 739 / 149 241 / 37

translit 33 1125 / 121 140 / 5 447 / 73 301 / 37 237 / 6
unrotate 28 984 / 43 92 / 0 441 / 20 189 / 19 262 / 4

Total 618 20146 / 3136 2991 / 139 7467 / 1363 5279 / 1155 4409 / 479

4.2 Tool Selection

We used Proteum testing tool [6], developed at
University of São Paulo, which supports Mutation
Testing application to C programs.

4.3 Test Set Generation

One ad hoc test set was generated for each program
based on its specification, i.e., none functional criterion
has been used. Next, these test sets were improved
based on their adequacy w.r.t. Mutation Testing: new
test cases were added to obtain a MT-adequate test set
for each one of the 27 programs. We kept in these sets
only effective test cases, i.e., test cases that killed at
least one mutant.

4.4 8ZKKNHNJSY8ZKKNHNJSY Procedure Application

For each program, the cost of the mutant operators was
determined. In Graphic 1 we provide information on
the mutant operators cost in terms of number of
generated mutants and in terms of number of equivalent
mutants for the most prevalent ones. From 71, only 39
operators were applicable (i.e., generate at least one
mutant) to the 27-program suite: 10 of statement, 21 of
operator, 5 of variable and 3 of constant.

0

500

1000

1500

2000

2500

3000

OESA ORBN OARN OEBA SSD L STRP ORAN ORRN VTW D OEAA SRSR Cc cr VDTR Cc sr CRCR Vsrr

Mutant Ope rators

Nu
m

be
r o

f M
uta

nts

(a)

0.0

5.0

10.0

15.0

20.0

25.0

OESA ORBN OARN OEBA SSDL STRP ORAN ORRN VTW D OEAA SRSR Cccr VDTR Ccsr CRCR Vsrr

M utan t O p e rators

Pe
rc

en
ta

ge

Equivalents of op / Total of Mutants

Equivalents of op / Total of Equivalents

(b)

Graphic 1. Program Suite I:
Mutant Operators Cost per Number of:

(a) Generated Mutants and (b) Equivalent Mutants

Following, the mutation score of the adequate test
sets for each operator opi w.r.t. each other operator opj

of the total set of operators was determined, i.e., the
capability of a opi-adequate test set to distinguish the
mutants of each operator opj ∈ OP.

In Table 3 a sample of the average mutation score
per operator obtained for the 27-program suite is
presented.

Table 3. Program Suite I:
Sample of the Average Mutation Score per Operator

op \ op Cccr Ccsr CRCR ORRN SSDL SSWM VTWD... Average
Cccr 1.000 0.887 0.904 0.921 0.936 0.865 0.923... 0.922
Ccsr 0.902 1.000 0.992 0.938 0.908 0.835 0.974... 0.948

CRCR 0.901 0.982 1.000 0.915 0.910 0.835 0.973... 0.937
ORRN 0.900 0.863 0.870 1.000 0.921 0.465 0.865... 0.897
SSDL 0.909 0.853 0.881 0.887 1.000 1.000 0.868... 0.885
SSWM 0.470 0.580 0.500 0.890 0.840 1.000 0.495... 0.594
VTWD 0.902 0.950 0.969 0.916 0.905 0.800 1.000... 0.928

...

Average 0.732 0.719 0.730 0.767 0.786 0.544 0.730... –

From Table 3 we can extract the following
information:

� The average mutation score of opi-adequate test sets
w.r.t. all opj ∈ OP. For instance, on average, the
mutation score that ORRN (fifth line) determines w.r.t.
Ccsr (third column) is 0.863, i.e., the
ORRN-adequate test sets are able to distinguish 86.3%
of the mutants of Ccsr.

� The average mutation score of opi-adequate test sets
w.r.t. OP. For instance, on average, ORRN-adequate
test sets determine a mutation score of 0.897 w.r.t.
Mutation Testing.

� The average strength of opi w.r.t. opj, opi ∈ OP. For
instance, on average, the strength of Ccsr w.r.t. ORRN
is 0.137 (1 - 0.863).

� The average strength of opi w.r.t. OP. For instance, on
average, the strength of Ccsr w.r.t. Mutation Testing is
0.281 (1 - 0.719).

From Graphic 1(a) and Table 3, we obtained
Table 4. This table presents the mutant operators
ordered according the mutation score, strength and cost
– required information for applying the 8ZKKNHNJSY
Procedure.

Table 4. Program Suite I:
Order of Operators According to:

(a) Mutation Score, (b) Strength and (c) Cost

(a) (b) (c)
Mutation Score Strength Cost

Ccsr (0.948) SSWM (0.456) Vsrr (2620)
Vsrr (0.948) SWDD (0.364) CRCR (1631)

CRCR (0.937) OABN (0.353) Ccsr (1559)
VTWD (0.928) SMTC (0.339) VDTR (1437)
Cccr (0.922) OLSN (0.338) Cccr (1219)

ORRN (0.897) Vprr (0.323) SRSR (1193)
VDTR (0.891) OASN (0.310) OEAA (1010)
SSDL (0.885) OLLN (0.291) VTWD (958)
ORSN (0.873) OARN (0.283) ORAN (830)
ORAN (0.872) Ccsr (0.281) ORRN (830)
SRSR (0.866) CRCR (0.270) STRP (677)
ORBN (0.856) VTWD (0.270) SSDL (676)

...

To apply the 8ZKKNHNJSY Procedure we used
ms* = 0.99, in fact the same index considered in
Offutt et al.’s study [15]. Table 7 contains the
preliminary sufficient mutant operators sets (SSprel)
obtained at each step of the procedure application. The
set of mutant operators that are not present in SSprel is

referred to as prelSS , i.e., prelSS = OP - SSprel.

In Step 1, considering AIMS (Average Index of
Mutation Score) = 0.900 ± 0.005 and Table 4(a), we
obtained SSprel = {Ccsr, Vsrr, CRCR, VTWD, Cccr,
ORRN}.

In Step 2 the operator SSDL was included in SSprel,
since it did not contain any operator of the statement
mutation class. Moreover, SSDL, according to Table
4(a), on average, determines the greatest mutation
score w.r.t. the total set of operators among the

statement mutation class and SSprel

99.0

⇒/ {SSDL}.
In Step 3, as CRCR was the most empirically

included among the operators of SSprel, it was removed.
Repeating this step the operator Vsrr was also removed.

In Step 4, considering Table 4(c), we determined
SSDL, ORRN, VTWD, Cccr e Ccsr as the incremental
order to apply the mutant operators of SSprel.

In Step 5, in this case, we aimed at including in
SSprel at most one additional operator of each mutation
class. We also defined IMI (Index of Minimum
Increment) = 0.001, what represents to add to SSprel

those operators that allow distinguishing at least 0.5%
of the significant mutants. According to Table 5, which
contains information about the mutation score

increment each operator of prelSS provides in the first

iteration, the nine first operators were considered.
Starting with the statement mutation class, we observed
that SMTC (0.003875) was the operator that determines
the greatest increment; in the same range of increment
(0.003) was also the operator SMTT (0.003386). As
SSprel empirically included neither SMTC nor SMTT
and since the strength of SMTC was the greatest,
SMTC was added to SSprel. This step was repeated
looking for the operator, variable and constant
mutations. At the end, SMTC, OLBN and VDTR were
included in SSprel and an increment of 0.007531 was
obtained, what represents more than 3.7% of the
significant mutants.

Table 5. Program Suite I: Mutation Score Increment

Mutant
Operator

Index of
Increment

SSprel Score +
Increment

SMTC 0.003875 0.992269
Varr 0.003407 0.991801

SMTT 0.003386 0.991780
VDTR 0.002425 0.990819
Vsrr 0.001525 0.989918

OLAN 0.001286 0.989680
OLRN 0.001273 0.989667
OLBN 0.001231 0.989624
ORAN 0.001116 0.989510
OEAA 0.000869 0.989263
ORBN 0.000803 0.989197

...

OABN 0.000118 0.988512
Vprr 0.000026 0.988420

In Step 6, considering Table 4(b) and
AIS (Average Index of Strenght) = 0.300 ± 0.005, the
operators SSWM, SWDD, OABN, SMTC, OLSN, Vprr
and OASN were taken of high strength. According to
Table 6, which contains the mutation score that SSprel

determines w.r.t. the operators of high strength, SWDD
and OASN were not empirically included by SSprel and
were taken in consideration. Since SWDD presented

the greatest strength, it was added to SSprel. Repeating
this step the operator OASN was also included. At the
end of Step 6, the final sufficient mutant operators set
was SS-27 = {SWDD, SMTC, SSDL, OLBN, OASN,
ORRN, VTWD, VDTR, Cccr, Ccsr}. It is important to
observe that the greater the ms* value is the greater can
be the number of mutant operators included. For
instance, if we had used ms* = 0.98 the operator OASN
would not have been included in SS-27.

Table 6. Program Suite I:
 SSprel: Score of the High Strength Operators

Mutant Operator Mutation Score
SWDD 0.893
OASN 0.982
Vprr 0.993

OABN 0.996
OLSN 1.000
SSWM 1.000

4.5 Data Analysis

In this section we carry out some analysis with the data
obtained with the procedure application. The
preliminary sufficient sets (SSprel) and the final
sufficient set (SS-27) are analyzed w.r.t. Mutation
Testing. The mutation score (MS), the cost reduction
(CR) and the cost/benefit (CR/MS) evolution are
presented in Table 7 and in Graphic 2. Notice that for
the relation CR/MS we are only interested in sets with
a high mutation score, otherwise a set with a cost
reduction of 99% and a mutation score of 0.01 would
also look good.

Table 7. Program Suite I: Results Obtained at
Each Step of the 8ZKKNHNJSY Procedure

Step Mutant Operators MS CR (%) CR/MS
1 {Ccsr, Vsrr, CRCR,

VTWD, Cccr, ORRN}
0.98087 56.234 0.573

2 {Ccsr, Vsrr, CRCR,
VTWD, Cccr, ORRN,
SSDL}

0.99014 52.879 0.534

3 {Ccsr, VTWD, Cccr,
ORRN, SSDL}

0.98839 73.980 0.748

4 {SSDL, ORRN,
VTWD, Cccr, Ccsr}

0.98839 73.980 0.748

5 {SMTC, SSDL, OLBN,
ORRN, VTWD,
VDTR, Cccr, Ccsr}

0.99592 65.988 0.663

6 {SWDD, SMTC,
SSDL, OLBN,OASN,
ORRN, VTWD,
VDTR, Cccr, Ccsr}

0.99660 65.015 0.652

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Steps

M
ut

at
io

n
S

co
re

0

15

30

45

60

75

90

C
os

t R
ed

uc
tio

n
(%

)

Mutation Score Cost Reduction

Graphic 2. Program Suite I: Sufficient Set Evolution

We also carry out a comparison among the sets:
SS-27; CSS-27 (the constrained sufficient set from
SS-27, composed of the most representative operator of
each mutation class, i.e., the operator that determines
the greatest mutation score for that class); S-Offutt-27
(the operators obtained from Offutt et al.’s strategy);
S-Wong (the operators proposed by Wong et al.);
6-Selective-27 mutation; and some randomly mutation
criteria (10%, 20%, 30% and 40%). The results in
terms of mutation score (MS), cost reduction (CR) and
cost/benefit (CR/MS) are summarized in Table 8 and in
Graphic 3.

Table 8. Program Suite I: Comparison among Selective
and Randomly Mutation

Criterion MS CR (%) CR/MS
SS-27 0.99660 65.015 0.652

CSS-27 0.98505 80.031 0.812
S-Offutt-27 0.97143 78.115 0.804

S-Wong 0.97979 79.738 0.814
6-Selective-27 0.99242 47.945 0.483
10%-Randomly 0.97160 90.038 0.926
20%-Randomly 0.98791 79.554 0.805
30%-Randomly 0.99120 69.006 0.696
40%-Randomly 0.99420 59.352 0.597

0.940

0.950

0.960

0.970

0.980

0.990

1.000

S S -27 CS S -27 S -O ffutt -27 S -W ong 6-S elec t-27 10% 20% 30% 40%

C rite ria

M
ut

at
io

n
Sc

or
e

(a)

40.0

50.0

60.0

70.0

80.0

90.0

100.0

S S -27 CS S -27 S -O ffutt -27 S -W ong 6-S elec t-27 10% 20% 30% 40%

C rite ria

C
os

t R
ed

uc
tio

n
(%

)

(b)

Graphic 3. Program Suite I: Selective and Randomly
Mutation: (a) Mutation Score and (b) Cost Reduction

On average we can observe that:

� The SS-27 criterion determines the greatest mutation
score followed by 40%-Randomly, although the cost
reduction they provide are not the greatest.

� The 10%-Randomly criterion provides the greatest cost
reduction followed by CSS-27.

� In terms of cost/benefit the best criterion is
10%-Randomly followed by S-Wong and CSS-27.

Another relevant aspect to be considered is the
effectiveness of the criteria. If we consider
effectiveness by computing the mutation score of the
adequate test sets w.r.t. a specific criterion against the
full set of operators, we would recommend SS-27,
6-Selective-27 and 40%-Randomly, respectively, as
they determine mutation scores greater than 0.990 and
are in the same range of cost/benefit. Other approach
would be measuring the relative abilities of the
adequate test sets w.r.t a criterion C to detect actual
faults in the programs. Wong et al. [20][21][22] have
provided evidences that Selective Mutation is more
effective in revealing faults than Randomly Mutation.
Giving these considerations, we focus our analysis on
the selective criteria.

Table 9 provides a strength analysis among the
selective criteria. For example, the strength of SS-27
w.r.t. S-Offutt-27 is measured by calculating the
average mutation score that S-Offutt-27-adequate test
sets provide w.r.t. the mutants generated by the
operators of SS-27. We can observe that:

� For all programs, the mutation score provided by
SS-27 is equal or greater than those obtained with
S-Offutt-27 and S-Wong.

� SS-27 includes S-Wong and CSS-27, i.e., SS-27-
adequate test sets are able to distinguish all mutants
generated by the operators of S-Wong and CSS-27; the
inverse is not true.

� SS-27 and S-Offutt-27, and SS-27 and 6-Selective-27
are incomparable in the perspective of the inclusion
relation. However, SS-27 empirically includes
S-Offutt-27 and 6-Selective-27, i.e., SS-27-adequate
test sets are able to distinguish, on average, 99.9% and
99.6%, respectively, of the mutants generated by the
S-Offutt-27 and 6-Selective-27 operators while
S-Offutt-27-adequate test sets and 6-Selective-27-
adequate test sets are able to distinguish 97.2% and
98.8%, respectively, of the mutants generated by the
operators of SS-27.

Table 9. Program Suite I: Strength Analysis

Criteria Mutation Score
SS-27 × CSS-27 1.00000
CSS-27 × SS-27 0.98353

SS-27 × S-Offutt-27 0.99902
S-Offutt-27 × SS-27 0.97157

SS-27 × S-Wong 1.00000
S-Wong × SS-27 0.98353

SS-27 × 6-Selective-27 0.99650
6-Selective-27 × SS-27 0.98798

The uniformity of the mutation scores determined
by the selective criteria for all the programs, illustrated
in Table 10(a), is also a relevant data. Table 10(b)
provides the corresponding cost reduction for each
program. According to these tables, we notice that:

� SS-27 determines a mutation score equal 1.000 for 13
programs followed by 6-Selective-27 and S-Wong with
11 and 5 programs, respectively.

� SS-27 determines a mutation score greater than 0.990
for 25 programs followed by 6-Selective-27, CSS-27
and S-Wong with 20, 15 and 11 programs, respectively.

Table 10. Program Suite I: Distribution of
(a) Mutation Score and (b) Cost Reduction

(a)
Mutation Score

Program
SS-27 CSS-27 S-Offutt-27 S-Wong 6-Selective-27

append 1.00000 0.99381 0.99071 1.00000 0.99381
archive 0.99772 0.98178 0.95900 0.98178 1.00000
change 1.00000 0.90000 0.76000 0.90000 1.00000
ckglob 1.00000 1.00000 0.98387 1.00000 1.00000
cmp 1.00000 1.00000 0.99743 0.98972 0.98972

command 0.99896 0.94606 0.96473 0.94917 0.93361
compare 1.00000 0.99089 0.95900 0.99089 1.00000
compress 1.00000 0.98638 0.98365 0.98638 1.00000
dodash 0.99540 0.99540 0.97814 0.98044 0.99425

edit 0.95844 0.94286 0.95584 0.95584 0.97922
entab 1.00000 1.00000 1.00000 1.00000 1.00000

expand 0.99432 0.98579 0.96875 0.96591 1.00000
getcmd 1.00000 1.00000 1.00000 1.00000 1.00000
getdef 0.99858 0.99858 0.98725 0.99858 1.00000
getfn 1.00000 0.98522 0.97044 0.99015 0.99015
getfns 1.00000 0.99797 0.97967 0.98984 1.00000
getlist 0.99829 0.99316 0.99145 0.98803 0.98462
getnum 0.98982 0.98982 0.97149 0.96945 0.99389
getone 0.99438 0.98876 0.97472 0.99017 0.99579
gtext 1.00000 0.99862 1.00000 0.99862 0.99862

makepat 0.99788 0.99647 0.99788 0.98024 0.97459
omatch 1.00000 0.98548 0.97742 0.97742 0.98871
optpat 0.99346 0.97386 0.95098 0.93464 0.99673
spread 0.99796 0.98574 0.98065 0.99694 0.99491
subst 0.99700 0.99325 0.99025 0.98800 0.98875

translit 0.99602 0.99602 0.95518 0.95219 0.99801
unrotate 1.00000 0.99044 1.00000 1.00000 1.00000
Average 0.99660 0.98505 0.97143 0.97979 0.99242

(b)
Cost Reduction (%)

Program
SS-27 CSS-27 S-Offutt-27 S-Wong 6-Selective-27

append 68.217 82.429 81.912 79.845 38.501
archive 53.113 73.541 66.148 77.432 42.023
change 73.950 85.714 89.916 85.714 21.849
ckglob 64.110 78.356 80.548 74.658 39.178
cmp 60.233 75.116 75.814 67.907 52.093

command 54.598 73.985 68.186 79.619 60.646
compare 67.635 82.158 79.668 80.290 45.228
compress 66.960 78.855 86.784 70.925 35.463
dodash 64.146 79.739 77.124 76.004 45.285

edit 69.847 81.298 84.351 81.298 41.985
entab 65.135 77.297 84.324 74.865 38.378

expand 68.123 82.005 86.632 77.378 28.792
getcmd 69.186 95.465 73.023 95.000 83.488
getdef 64.762 80.595 77.619 82.857 47.024
getfn 62.753 77.530 77.935 76.316 36.437
getfns 59.330 75.279 73.206 80.383 50.080
getlist 65.634 77.729 80.531 76.696 39.676
getnum 61.879 76.241 76.241 74.468 36.702
getone 68.585 80.695 83.933 77.338 36.930
gtext 64.179 79.478 75.871 82.711 49.005

makepat 63.815 79.144 74.926 80.095 57.992
omatch 64.405 77.976 77.976 75.595 44.762
optpat 65.766 79.730 80.180 75.225 35.586
spread 68.992 81.904 80.961 83.223 50.236
subst 74.801 84.672 85.224 83.446 57.817

translit 64.711 78.578 78.933 79.111 43.644
unrotate 61.789 81.301 73.374 84.858 43.293
Average 65.015 80.031 78.115 79.738 47.945

� SS-27 determines a mutation score below 0.990 just for
the program getnum (0.98982) and edit (0.95844).

� SS-27 does not determine a mutation score below
0.950 for any program. The same does not happen with
S-Offutt-27, S-Wong and 6-Selective-27.

� S-Offutt-27, CSS-27 and S-Wong determine mutation
scores of 0.760, 0.900 and 0.900, respectively, for the
program change, while SS-27 and 6-Selective-27
present mutation scores of 1.000.

� The greatest cost reduction obtained with SS-27,
CSS-27, S-Offut-27, S-Wong and 6-Selective-27 sets
are 74.8%, 95.5%, 89.9%, 95.0% and 83.5% with a
mutation score of 0.997, 1.000, 0.760, 1.000 and 1.000,
respectively.

� The least cost reduction obtained with SS-27,
CSS-27, S-Offut-27, S-Wong and 6-Selective-27 sets
are 53.1%, 73.5%, 66.1%, 67.9% and 21.85% with a
mutation score of 0.998, 0.982, 0.959, 0.988 and 1.000,
respectively.

Considering mutation score, cost reduction, strength
and mutation score distribution, the SS-27 set would
constitute the best choice as it determines the greatest
mutation score, empirically includes the other selective
criteria and presents an excellent mutation score
uniformity, although it does not present the best cost
reduction. CSS-27 and S-Wong would also constitute a
good choice as these criteria present the best
cost/benefit relation. Another point that favors these
sets is that the cost to obtain them is very low; in fact,
for S-Wong there are no costs at all.

5 EXPERIMENT II

The same phases of Experiment I were also applied for
a set of 5-Unix utility programs. The main difference
was that, in Test Set Generation, 11 MT-adequate test
sets were used for each one of the 5 programs. Initially
we generated a pool of test cases composed by: 1) ad
hoc functional test cases, based on program
specification; and 2) randomly generated test cases.
From this pool, 11 test sets were generated for each
program. Next, we ran the test cases of each test set
against the mutants and, if necessary, we added manual
test cases to the set until we have obtained a
MT-adequate test set.

As illustrated in Table 11, these programs range in
size from 76 up to 119 executable statements and have
1619 up to 4332 mutants. In Table 11 it is also
provided information on the number of mutants per
mutation class as well as on the number of equivalent
mutants.

Table 11. Program Suite II:
Number of LOC and Mutants

Program LOC
Mutants

Total / Equiv
Statement

Total / Equiv
Operator

Total / Equiv
Variable

Total / Equiv
Constant

Total / Equiv
cal 119 4332 / 221 352 / 3 1409 / 86 791 / 117 1780 / 15

checkeq 76 3099 / 206 268 / 1 937 / 99 783 / 106 1111 / 0
comm 119 1728 / 166 405 / 5 642 / 111 367 / 35 314 / 15
look 107 2056 / 143 319 / 23 720 / 36 646 / 55 371 / 29
uniq 103 1619 / 93 348 / 0 621 / 64 406 / 28 244 / 1
Total 524 12834 / 829 1692 / 32 4329 / 396 2993 / 341 3820 / 60

In Graphic 4 we provide information on the mutant
operators cost in terms of number of generated mutants
and in terms of number of equivalent mutants for the
5-program suite, for the most prevalent operators. 56
operators were applicable to the 5 programs: 14 of
statement, 33 of operator, 6 of variable and 3 of
constant.

0

200

400

600

800

1000

1200

1400

1600

1800

ORLN OEBA OARN ORBN VTW D OEAA SSD L STRP SRSR ORAN ORRN VDTR CRCR Cc sr Vsrr Cc cr

M uta n t O pe ra to rs

Nu
m

be
r o

f M
uta

nts

(a)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

ORLN OEBA OARN ORBN VTW D OEAA SSDL STRP SRSR ORAN ORRN VDTR CRCR Ccsr Vsrr Cccr

M utan t O p e rators

Pe
rc

en
ta

ge

Equivalents of op / Total of Mutants

Equivalents of op / Total of Equivalents

(b)

Graphic 4. Program Suite II:
Mutant Operators Cost per Number of:

(a) Generated Mutants and (b) Equivalent Mutants

For Experiment II, the sufficient mutant operators
set was SS-5 = {SMTC, SSDL, OEBA, ORRN, VTWD,
VDTR}. We carry out the same analysis as for the
Experiment I. The preliminary sufficient sets (SSprel)
and the final sufficient set (SS-5) are analyzed w.r.t.
Mutation Testing. The mutation score (MS), the cost
reduction (CR) and the cost/benefit (CR/MS) evolution
are presented in. Table 12 and in Graphic 5.

Table 12. Program Suite II: Results Obtained at
Each Step of the 8ZKKNHNJSY Procedure

Step Mutant Operators MS CR (%) CR/MS
1 {Cccr, Vsrr, VTWD,

SSDL, ORRN, Ccsr}
0.99662 52.680 0.529

2 {Cccr, Vsrr, VTWD,
SSDL, ORRN, Ccsr}

0.99662 52.680 0.529

3 {VTWD, SSDL, ORRN} 0.99209 89.224 0.899
4 {SSDL, ORRN, VTWD} 0.99209 89.224 0.899
5 {SSDL, OEBA, ORRN,

VTWD, VDTR}
0.99733 82.305 0.825

6 {SMTC, SSDL, OEBA,
ORRN, VTWD, VDTR}

0.99761 82.048 0.822

0.990

0.992

0.994

0.996

0.998

1.000

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Steps

M
ut

at
io

n
S

co
re

0.0

20.0

40.0

60.0

80.0

100.0

C
os

t R
ed

uc
tio

n
(%

)

Mutation Score Cost Reduction

Graphic 5. Program Suite II: Sufficient Set Evolution

The results in terms of mutation score, cost
reduction and cost/benefit for Selective and Randomly
Mutation are summarized in Table 13 and in Graphic 6.
We can observe, on average, that:

� The 6-Selective-5 criterion determines the greatest
mutation score followed by SS-5.

� All criteria but 10%-Randomly determine a mutation
score greater than 0.990.

� CSS-5 provides the greatest cost reduction followed by
10%-Randomly, S-Wong and SS-5.

� In terms of cost/benefit the best criterion is
10%-Randomly followed by CSS-5, S-Wong and SS-5.

Table 13. Program Suite II: Comparison among
Selective and Randomly Mutation

Criterion MS CR (%) CR/MS
SS-5 0.99761 82.048 0.822

CSS-5 0.99209 89.224 0.899
S-Offutt-5 0.99066 77.014 0.777
S-Wong 0.99195 83.435 0.841

6-Selective-5 0.99858 51.340 0.514
10%-Randomly 0.98799 89.045 0.901
20%-Randomly 0.99501 77.700 0.781
30%-Randomly 0.99685 67.835 0.680
40%-Randomly 0.99720 57.675 0.579

0.976

0.980

0.984

0.988

0.992

0.996

1.000

S S -5 CS S -5 S -O ffutt -5 S -W ong 6-S elec t-5 10% 20% 30% 40%

C rite ria

M
ut

at
io

n
Sc

or
e

(a)

40.0

50.0

60.0

70.0

80.0

90.0

100.0

S S -5 CS S -5 S -O ffutt -5 S -W ong 6-S elec t-5 10% 20% 30% 40%

C rite ria

C
os

t R
ed

uc
tio

n
(%

)

(b)

Graphic 6. Program Suite II: Selective and Randomly
Mutation: (a) Mutation Score and (b) Cost Reduction

If we favor the effectiveness of the criteria in terms
of the mutation score of the adequate test sets w.r.t. a
specific selective criterion against the full set of
operators, we would recommend SS-5, CSS-5 and
S-Wong, respectively, as they determine mutation
scores greater than 0.990 and are in the same
cost/benefit range.

From now on we focus our analysis on the selective
criteria. Table 14 provides a strength analysis among
the selective criteria. We can observe that SS-5 presents
the greatest strength to the other selective criteria.
If we consider ms* = 0.99 we can say that

SS-5
99.0

⇒ S-Offutt-5 and that SS-5 is empirically
equivalent to S-Wong and 6-Selective-5.

Table 14. Program Suite II: Strength Analysis

Criteria Mutation Score
SS-5 × CSS-5 1.00000
CSS-5 × SS-5 0.98443

SS-5 × S-Offutt-5 0.99813
S-Offutt-5 × SS-5 0.98421
SS-5 × S-Wong 0.99993
S-Wong × SS-5 0.99175

SS-5 × 6-Selective-5 0.99619
6-Selective-5 × SS-5 0.99263

The uniformity of the mutation scores determined
by the selective criteria for all the programs and the
corresponding cost reduction for each program are
illustrated in Table 15. We notice that:

� None criterion determines a mutation score equal 1.000
for any of the 5-Unix programs.

� Only SS-5 and 6-Selective-5 criteria determine
mutation scores greater than 0.990 for all programs.

� The greatest cost reduction obtained with the SS-5,
CSS-5, S-Offutt-5, S-Wong and 6-Selective-5 sets were
85.9%, 92.3%, 82.1%, 87.6% and 60.4% respectively.

� The least cost reduction obtained with the SS-5,
CSS-5, S-Offutt-5, S-Wong and 6-Selective-5 sets were
77.9%, 84.5%, 69.5%, 79.5% and 38.5%, respectively.

Table 15. Program Suite II: Distribution of
(a) Mutation Score and (b) Cost Reduction

(a)
Mutation Score

Program
SS-5 CSS-5 S-Offutt-5 S-Wong 6-Selective-5

cal 0.99955 0.99674 0.99970 0.99961 0.99964
checkeq 0.99719 0.99270 0.98600 0.99713 0.99612
comm 0.99478 0.98725 0.98281 0.98802 0.99923
look 0.99677 0.98711 0.98838 0.98135 0.99990
uniq 0.99975 0.99667 0.99642 0.99366 0.99799

Average 0.99761 0.99209 0.99066 0.99195 0.99858

(b)
Cost Reduction (%)

Program
SS-5 CSS-5 S-Offutt-5 S-Wong 6-Selective-5

cal 85.919 92.267 82.110 87.581 56.948
checkeq 81.413 89.190 74.734 81.478 60.374
comm 77.951 84.491 78.935 79.456 38.542
look 80.691 89.494 69.455 83.268 45.331
uniq 78.999 85.855 75.293 80.544 40.334

Average 82.048 89.224 77.014 83.435 51.340

As in Experiment I, considering mutation score,
cost reduction, strength and mutation score
distribution, the SS-5, CSS-5 and S-Wong sets would
constitute the best choices. Among these, SS-5 provides
the best mutation score, gives the best mutation score
uniformity and presents the greatest strength against
the other criteria. All of them provide a cost reduction
over 80%.

6 EXPERIMENT I X EXPERIMENT II

In this section we crosscheck the selective criteria
obtained for Experiment I against Experiment II and
vice-versa. This give us an idea of the goodness of each
selective criterion determined based on a suite of
programs (or application domain) for another programs
(or domains). Table 16 gives the mutant operators that
compose each selective criterion. The mutation score
and cost reduction obtained for the two experiments
applying these criteria are summarized in Table 17.

Table 16. Selective Criteria Mutant Operators

Mutation Class
Criterion

Statement Operator Variable Constant

SS-27
SWDD
SMTC
SSDL

OLBN
OASN
ORRN

VTWD
VDTR

Cccr
Ccsr

SS-5
SMTC
SSDL

OEBA
ORRN

VTWD
VDTR

–

CSS-27 SSDL ORRN VTWD Ccsr
CSS-5 SSDL ORRN VTWD –

S-Offutt-27 – – –
Cccr
Ccsr

CRCR

S-Offutt-5 – –

Vprr
Varr

VTWD
VDTR
Vsrr

–

S-Wong STRP
OLLN
OLNG
ORRN

VTWD
VDTR

–

6-Selective-27 OP - {Vsrr, CRCR, Ccsr, VDTR, Cccr, SRSR}
6-Selective-5 OP - {Cccr, Vsrr, Ccsr, CRCR, VDTR, ORRN}

Table 17. Selective Criteria: An Overview of the
Mutation Score and Cost Reduction

27-Program Suite 5-Program Suite
Criterion

MS CR (%) MS CR (%)
SS-27 0.99660 65.015 0.99769 58.711
SS-5 0.98870 77.440 0.99761 82.048

CSS-27 0.98505 80.031 0.99410 76.165
CSS-5 0.97567 87.769 0.99209 89.224

S-Offutt-27 0.97143 78.115 0.98829 70.235
S-Offutt-5 0.93850 73.796 0.99066 77.014
S-Wong 0.97979 79.738 0.99175 83.435

6-Selective-27 0.99242 47.945 0.99864 53.802
6-Selective-5 0.99122 46.143 0.99858 51.340

From Table 17 we can conclude that the only sets
that determine mutation scores above 0.990 for both
experiments are SS-27, 6-Selective-27 and
6-Selective-5. Observe that SS-27 contains three
operators (Ccsr, VDTR, Cccr) that are among the six
most prevalent ones for Experiment I and four most
prevalent operators (Cccr, Ccsr, VDTR, ORRN) for
Experiment II. Yet, it provides a greater cost reduction
than the 6-Selective sets for both experiments. The
criterion SS-5 contains two operators (VDTR, ORRN)
that are among the six most prevalent ones for
Experiment II and one most prevalent operator (VDTR)
for Experiment I. The criterion S-Offutt-5 is the only
criterion that determines a mutation score below 0.950
when applied to Experiment I. The criterion S-Offutt-27
provides mutation scores greater than 0.970 for both
experiments.

In Experiment I and Experiment II, considering
mutation score, cost reduction, strength and mutation
score uniformity we concluded that the sets SS, CSS
(obtained by applying the 8ZKKNHNJSY Procedure) and
S-Wong yield the best results. These sets have a
common set of operators as can be inferred from
Table 16 and illustrated in Figure 1.

SMTC SSDL

VTWD VDTR
ORRN

OEBA

SWDD
OLBN OASN

Cccr
Ccsr

OP
SS-27

S-Wong

STRP
OLLN OLNG

SS-5

Figure 1. Commonality among SS-27, SS-5
and S-Wong Criteria

Observe that, except for the presence of OEBA, the
sufficient set for the 5-Unix programs is a subset of the
sufficient set for the suite of 27 programs. Also,
observe that the operators SMTC, SSDL, ORRN,
VTWD and VDTR are common to both sufficient sets
and ORRN, VTWD and VDTR are common to the
S-Wong set too.

From Table 18, we can conclude that SS-27
99.0

⇒ SS-5.
From Table 9 and Table 14 it can also be concluded
that SS-27 ⇒ S-Wong and that SS-5 and S-Wong are

empirically equivalent. In particular, SS-27
99.0

⇒ STRP,

SS-27
99.0

⇒ OLLN and SS-27
99.0

⇒ OLNG and so does SS-5.

It is important to observe that SS-27
99.0

⇒ OEBA, but for
program look. By the other hand, two of the common
operators (VDTR, ORRN) are among the most
prevalent ones.

Table 18. Strength Analysis of the Sufficient Sets

Experiment Criteria Mutation Score
SS-27 × SS-5 0.99933

27-Program Suite
SS-5 × SS-27 0.98842
SS-27 × SS-5 0.99821

5-Program Suite
SS-5 × SS-27 0.99862

Another point that should be highlighted is related
to the number of equivalent mutants generated per
operator. Offutt et al. [15] define the semantic size of a
fault to be the relative size of the input domain for
which the program is incorrect. They suggest that the
underlying goal of selective mutation is to try to only
use operators that tend to produce mutants that have
semantically small faults. If this model holds, their
expectation would be that the selective mutants should
contain a high percentage of equivalent mutants, what
would impose costs to determine the equivalent
mutants. In other hand, we may focus heuristic to deal
with equivalent mutants just related to the sufficient
operators.

In the Offutt et al.’s experiment it turned out the
five operators in the selective set account for 57% of
the equivalent mutants. In our experiments we obtained
similar results. The SS-27 set accounts for 43.4%
(1361/3136) and 56.9% (472/829) of the equivalent
mutants in experiments I and II, respectively. SS-5
accounts for 39.6% (1242/3136) and 53.8% (446/829)
of equivalent mutants in experiments I and II,
respectively. S-Offutt-27 accounts for 15.3% and 7.2%,
while S-Offut-5 accounts for 36.8% and 41.0% for
Experiments I and II, respectively. S-Wong accounts
for 29.6% and 45.5% for Experiments I and II,
respectively. 6-Selective-27 accounts for 51.0% and
53.4%, while 6-Selective-5 accounts for 48.8% and
47.9% for Experiments I and II, respectively.

One interesting fact in this scenario is that the
operators that generate the greatest percentage of the
equivalent mutants, in relation to either the total
number of equivalent mutants or the total number of
mutants, are among the 15th ones. The six most
prevalent ones account for 49.0% in Experiment I and
52.1% in Experiment II. We would expect then the
selective operators to be among the most prevalent
ones, at least for C. This would conflict with applying
N-Selective criteria. It should also be observed that all
the selective criteria account for the same range of
equivalent mutants. This is a point to be further
investigated.

One final point to be analyzed is the evolution of
the sufficient mutant operators sets obtained in each
step of the 8ZKKNHNJSY Procedure application.
Analyzing Table 7 and Table 12 and Graphic 2 and
Graphic 5 we can conclude that Step 1 and Step 2 favor
the mutation score while Step 3 favors the cost
reduction, eliminating those mutants empirically
included by others. In Step 4 we have the best
cost/benefit. Step 5 and Step 6 favor the mutation score
again, looking for relevant operators of each mutation
class and for the high strength operators. This
information should be used in a further refinement of
the 8ZKKNHNJSY Procedure proposed in this paper.

7 CONCLUSIONS AND FURTHER WORK

We report in this paper two experiments toward the
determination of sufficient mutant operators for C, in
the same line of Offutt et al.’s study for FORTRAN
[15]. In the scope of these case studies a procedure for
the determination of a sufficient mutant operators set
for C language, in the context of Proteum testing tool,
was proposed. The 8ZKKNHNJSY Procedure [3][4], as it
was named, aims at providing a systematic way to
determine a selective criterion based on Mutation
Testing. The proposed procedure synthesizes the
guidelines, discussed in this paper, for determination of
sufficient mutant operators we have devised motivated
by previous results in the area. The guidelines explore
concepts such as mutation score determined by a
specific operator, inclusion relation among the
operators, strength and mutation type. Along this study

a comparison with the most relevant previous works on
this subject was also carried out.

The 8ZKKNHNJSY Procedure application leaded to a
considerable reduction on the number of available
operators (71) in Proteum. The sufficient mutant
operators sets obtained provided a high adequacy
degree w.r.t. Mutation Testing: the mutation scores
were above 0.995. Considering the application cost, in
terms of number of mutants, the reductions were, on
average, above 65%

In both experiments, considering the mutation
score, cost reduction, strength and mutation score
distribution, the sufficient operator sets determined by
the application of the 8ZKKNHNJSY Procedure would be
among the best choice. They presented the greatest
mutation scores, empirically included the other
selective criteria, presented an excellent mutation score
uniformity among the programs and determined the
greatest strengths against the other selective criteria.

The computational cost to determine a sufficient
mutant operators set may strongly influence the choice
of a specific approach. The aim is to define a
pragmatically, low-cost, domain-independent approach
for the determination of such set. For instance,
Wong et al.’s selective set is domain and program
independent.

One important point to be looked at, related to the
guidelines i and ii, are the good results obtained with
the constrained sufficient sets (CSS), which include the
more representative operator of each mutation class.
These sets constitute a very good start point to build up
a sufficient mutant operators set.

Another point is that the proposed 8ZKKNHNJSY
Procedure’s structure makes possible that the
determination of the sufficient set be done and applied
in an incremental way, according to system criticality
and time and budget constraints. If we apply just the
guidelines i to iv, i.e., just the operators obtained in
Step 4, we would have a high mutation score, with a
low application cost. The other two steps related to
guidelines v and vi, favor the test effectiveness, in
terms of mutation score, but compromise the
cost/benefit relation.

In this work we did not take in account other costs
associated to Mutation Testing as well as the
effectiveness. For instance, Mresa et al. [13] have also
investigated sufficient FORTRAN mutant operators
using Mothra, taking in account the mutation scores
provided by the individual operators and their
associated costs (including both test set generation and
equivalent mutant detection) in order to determine the
most efficient operators. According to the authors, the
results show that the use of the efficient operators can
provide significant gains for Selective Mutation if the
acceptable mutation score is not very close to 1.000,
otherwise, Randomly Selected Mutation provides a
more efficient strategy than a sufficient set of
operators. Mresa et al. have also raised the point it can
not be assumed that a test set that kills 99% of the
mutants killed by an adequate test set is able to detect
99% of the real faults that are detected by the adequate

test set. Our measure of effectiveness considered just
the mutation score of the selective criteria.

Giving the considerations above we are motivated
to further investigate and refine the sufficient sets,
taking in consideration operator cost, in terms of
number of generated mutants, of equivalent mutants
and of number of test cases. Also, further investigation
analyzing the abilities of the selective criteria to detect
real faults will be carried out.

As mentioned before, the sufficient set may be
dependent on the application domain and on the
programs used, i.e., the specific characteristics of each
program (or suite of programs). This is also a point to
be further investigated. Applying the procedure in other
programs at different domains will generate a
knowledge base that may be used for improving the
sufficient set.

Further studies are been planned to investigate the
scalability of these results to larger programs. We are
also interested in conduct a broad selection of
programs, from different application domains, to
replicate this study, in order to make the results
presented so far, more significant.

A similar study has been carried out at the
integration testing level, considering the Interface
Mutation criterion [8] and using Proteum/IM [7] – a
tool that supports the testing of C programs at the
integration level, and similar results, to appear in a
forthcoming paper, were obtained.

ACKNOWLEDGEMENTS

The authors would like to thank the Brazilian funding
agencies CAPES, FAPESP and CNPq for their support
to the research activities carried out by the Software
Engineering Group at ICMC/USP, São Carlos, Brazil.

REFERENCES

[1] A.T. Acree, T.A. Budd, R.A. DeMillo, R.J.
Lipton, F.G. Sayward. Mutation Analysis.
Technical Report GIT-ICS-79/08, Georgia
Institute of Technology, Atlanta, GA, September
1979.

[2] H. Agrawal, R.A. DeMillo, R. Hathaway, W. Hsu,
Wy Hsu, E.W. Krauser, R.J. Martin, A.P. Mathur,
E.H. Spafford. Design of Mutant Operators for the
C Programming Language. Technical Report
SERC-TR-41-P, Software Engineering Research
Center, Purdue University, West Lafayette, IN,
March 1989.

[3] E.F. Barbosa. A Contribution for the
Determination of a Sufficient Mutant Operators
Set for C-Program Testing. MSc. Thesis,
ICMC/USP, São Carlos, SP, Brazil, November
1998 (in Portuguese).

[4] E.F. Barbosa, A.M.R. Vincenzi, J.C. Maldonado.
A Contribution for the Determination of a
Sufficient Mutant Operators Set for C-Program
Testing. In Proceedings of the 12th Brazilian

Symposium of Software Engineering, pages 103-
120, Maringá, PR, Brazil, October 1998 (in
Portuguese).

[5] T.A. Budd, R.A. DeMillo, R.J. Lipton, F.G.
Sayward. Theoretical and Empirical Studies on
Using Program Mutation to Test the Functional
Correctness of Programs. In Proceedings of the 7th

ACM Symposium on Principles of Programming
Languages, pages 220-233, New York, NY,
January 1980.

[6] M.E. Delamaro, J.C. Maldonado. Proteum: A Tool
for the Assessment of Test Adequacy for C
Programs. In Proceedings of the Conference on
Performability in Computing Systems (PCS 96),
Brunswick, NJ, July 1996.

[7] M.E. Delamaro, J.C. Maldonado. Interface
Mutation: Assessing Testing Quality at
Interprocedural Level. In Proceedings of the 19th

International Conference of the Chilean Computer
Science Society (SCCC), pages 78-86, November
1999.

[8] M.E. Delamaro, J.C. Maldonado, A.P. Mathur.
Interface Mutation: An Approach to Integration
Testing. IEEE Transactions on Software
Engineering (to appear).

[9] R.A. DeMillo, R.J. Lipton, F.G. Sayward. Hints
on Test Data Selection: Help for the Practicing
Programmer. IEEE Computer, 11(4), pages 34-41,
April 1978.

[10] R.A. DeMillo, D.S. Gwind, K.N. King, W.N.
McKraken, A.J. Offutt. An Extended Overview of
the Mothra Testing Environment. In Proceedings
of the 2nd Workshop on Software Testing,
Verification and Analysis, Banff, Canada, July
1988.

[11] A.P. Mathur. Performance, Effectiveness, and
Reliability Issues in Software Testing. In
Proceedings of the 15th Annual International
Computer Software and Applications Conference,
pages 604-605, Tokio, Japan, September 1991.

[12] A.P. Mathur, W.E. Wong. An Empirical
Comparison of Data Flow and Mutation-Based
Test Adequacy Criteria. The Journal of Software
Testing, Verification and Reliability, 4(1), pages
9-31, March 1994.

[13] E.S. Mresa, L. Bottaci. Efficiency of Mutation
Operators and Selective Mutation Strategies: an
Empirical Study. The Journal of Software Testing,
Verification and Reliability, 9(4), pages 205-232,
December 1999.

[14] A.J. Offutt, G. Rothermel, C. Zapf. An
Experimental Evaluation of Selective Mutation. In
Proceedings of the 15th International Conference
on Software Engineering, pages 100-107,
Baltimore, MD, May 1993.

[15] A.J. Offutt, A. Lee, G. Rothermel, R.H. Untch, C.
Zapf. An Experimental Determination of
Sufficient Mutant Operators. ACM Transactions
on Software Engineering Methodology, 5(2),
pages 99-118, April 1996.

[16] S. Rapps, E.J. Weyuker. Selecting Software Test
Data Using Data Flow Information. IEEE
Transactions on Software Engineering, 11(4),
pages 367-375, April 1985.

[17] A.M.R. Vincenzi. Subsidies to the Establishment
of Mutation Based Testing Strategies. MSc.
Thesis, ICMC/USP, São Carlos, SP, Brazil,
November 1998 (in Portuguese).

[18] E.J. Weyuker. The Cost of Data Flow Testing: An
Empirical Study. IEEE Transactions on Software
Engineering, 16(2), pages 121-128, February
1990.

[19] E.J. Weyuker, S.N. Weiss, R.G. Hamlet.
Comparison of Program Testing Strategies. In
Proceedings of the 4th Symposium on Software
Testing, Analysis and Verification, pages 154-164,
Victoria, British Columbia, Canada,October 1991.

[20] W.E. Wong, J.C. Maldonado, A.P. Mathur.
Mutation versus All-Uses: An Empirical
Evaluation of Cost, Strength, and Effectiveness.
Software Quality and Productivity – Theory,
Practice, Education and Training, Hong Kong,
December 1994.

[21] W.E. Wong, A.P. Mathur. Reducing the Cost of
Mutation Testing: An Empirical Study. The
Journal of Systems and Software, 31(3), pages
185-196, December 1995.

[22] W.E. Wong, J.C. Maldonado, M.E. Delamaro,
S.R.S. Souza. A Comparison of Selective
Mutation in C and FORTRAN. In Proceedings of
the Workshop of the Validation and Testing of
Operational Systems Project, pp. 71-84, Águas de
Lindóia, SP, Brazil, January 1997.

[23] W.E. Wong, J.C. Maldonado, M.E. Delamaro.
Reducing the Cost of Regression Testing by Using
Selective Mutation. In Proceedings of the 8th

International Conference on Software Technology
(CITS), pages 11-13, Curitiba, PR, Brazil, June
1997.

